Probabilities on First Order Models
Publications de l'Institut Mathématique, _N_S_78 (2005) no. 92, p. 107 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

It is known that set algebras corresponding to first order models (i.e., cylindric set algebras associated with first order interpretations) are \emph{not} $\sigma$-closed, but closed w.r.t. certain infima and suprema i.e., \[ łeft|\exists x \alpha\right|=\bigcup_{i\in\omega}łeft|\alpha(y_i)\right| \quad\text{and}\quad łeft|\forall x \alpha\right|=\bigcap_{i\in\omega}łeft|\alpha(y_i)\right| łeqno{(*)} \] for \emph{any} infinite subsequence $y_1,y_2,\ldots y_i,\ldots$ of the individuum variables in the language. We investigate probabilities defined on these set algebras and being continuous w.r.t. the suprema and infima in $(*)$. We can not use the usual technics, because these suprema and infima are not the usual unions and intersections of sets. These probabilities are interesting in computer science among others, because the probabilities of the quantifier-free formulas determine that of \emph{any} formula, and the probabilities of the former ones can be measured by statistical methods.
DOI : 10.2298/PIM0578107F
Classification : 03B48 03G15
Keywords: probability logic, algebraic logic
@article{10_2298_PIM0578107F,
     author = {Miklos Ferenczi},
     title = {Probabilities on {First} {Order} {Models}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {107 },
     publisher = {mathdoc},
     volume = {_N_S_78},
     number = {92},
     year = {2005},
     doi = {10.2298/PIM0578107F},
     zbl = {1119.03065},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0578107F/}
}
TY  - JOUR
AU  - Miklos Ferenczi
TI  - Probabilities on First Order Models
JO  - Publications de l'Institut Mathématique
PY  - 2005
SP  - 107 
VL  - _N_S_78
IS  - 92
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0578107F/
DO  - 10.2298/PIM0578107F
LA  - en
ID  - 10_2298_PIM0578107F
ER  - 
%0 Journal Article
%A Miklos Ferenczi
%T Probabilities on First Order Models
%J Publications de l'Institut Mathématique
%D 2005
%P 107 
%V _N_S_78
%N 92
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0578107F/
%R 10.2298/PIM0578107F
%G en
%F 10_2298_PIM0578107F
Miklos Ferenczi. Probabilities on First Order Models. Publications de l'Institut Mathématique, _N_S_78 (2005) no. 92, p. 107 . doi : 10.2298/PIM0578107F. http://geodesic.mathdoc.fr/articles/10.2298/PIM0578107F/

Cité par Sources :