Mean Value of Piltz' Function Over Integers Free of Large Prime Factors
Publications de l'Institut Mathématique, _N_S_74 (2003) no. 88, p. 37
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We use the saddle-point method (due to
Hildebrand--Tenenbaum [3]) to study the asymptotic behaviour
of $\sum_{n\le x, P(n)\le y}\tau_k(n)$ for any $k>0$ fixed, where
$P(n)$ is the greatest prime factor of $n$ and $\tau_k$ is
Piltz' function. We generalize all results in [3], where the
case $k=1$ has been treated.
@article{10_2298_PIM0374037N,
author = {Servat Nyandwi},
title = {Mean {Value} of {Piltz'} {Function} {Over} {Integers} {Free} of {Large} {Prime} {Factors}},
journal = {Publications de l'Institut Math\'ematique},
pages = {37 },
year = {2003},
volume = {_N_S_74},
number = {88},
doi = {10.2298/PIM0374037N},
zbl = {1085.11045},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0374037N/}
}
TY - JOUR AU - Servat Nyandwi TI - Mean Value of Piltz' Function Over Integers Free of Large Prime Factors JO - Publications de l'Institut Mathématique PY - 2003 SP - 37 VL - _N_S_74 IS - 88 UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0374037N/ DO - 10.2298/PIM0374037N LA - en ID - 10_2298_PIM0374037N ER -
Servat Nyandwi. Mean Value of Piltz' Function Over Integers Free of Large Prime Factors. Publications de l'Institut Mathématique, _N_S_74 (2003) no. 88, p. 37 . doi: 10.2298/PIM0374037N
Cité par Sources :