Mean Value of Piltz' Function Over Integers Free of Large Prime Factors
Publications de l'Institut Mathématique, _N_S_74 (2003) no. 88, p. 37

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We use the saddle-point method (due to Hildebrand--Tenenbaum [3]) to study the asymptotic behaviour of $\sum_{n\le x, P(n)\le y}\tau_k(n)$ for any $k>0$ fixed, where $P(n)$ is the greatest prime factor of $n$ and $\tau_k$ is Piltz' function. We generalize all results in [3], where the case $k=1$ has been treated.
DOI : 10.2298/PIM0374037N
Classification : 11N25
Keywords: Piltz function
@article{10_2298_PIM0374037N,
     author = {Servat Nyandwi},
     title = {Mean {Value} of {Piltz'} {Function} {Over} {Integers} {Free} of {Large} {Prime} {Factors}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {37 },
     publisher = {mathdoc},
     volume = {_N_S_74},
     number = {88},
     year = {2003},
     doi = {10.2298/PIM0374037N},
     zbl = {1085.11045},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0374037N/}
}
TY  - JOUR
AU  - Servat Nyandwi
TI  - Mean Value of Piltz' Function Over Integers Free of Large Prime Factors
JO  - Publications de l'Institut Mathématique
PY  - 2003
SP  - 37 
VL  - _N_S_74
IS  - 88
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0374037N/
DO  - 10.2298/PIM0374037N
LA  - en
ID  - 10_2298_PIM0374037N
ER  - 
%0 Journal Article
%A Servat Nyandwi
%T Mean Value of Piltz' Function Over Integers Free of Large Prime Factors
%J Publications de l'Institut Mathématique
%D 2003
%P 37 
%V _N_S_74
%N 88
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0374037N/
%R 10.2298/PIM0374037N
%G en
%F 10_2298_PIM0374037N
Servat Nyandwi. Mean Value of Piltz' Function Over Integers Free of Large Prime Factors. Publications de l'Institut Mathématique, _N_S_74 (2003) no. 88, p. 37 . doi: 10.2298/PIM0374037N

Cité par Sources :