Mean Value of Piltz' Function Over Integers Free of Large Prime Factors
Publications de l'Institut Mathématique, _N_S_74 (2003) no. 88, p. 37
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We use the saddle-point method (due to
Hildebrand--Tenenbaum [3]) to study the asymptotic behaviour
of $\sum_{n\le x, P(n)\le y}\tau_k(n)$ for any $k>0$ fixed, where
$P(n)$ is the greatest prime factor of $n$ and $\tau_k$ is
Piltz' function. We generalize all results in [3], where the
case $k=1$ has been treated.
@article{10_2298_PIM0374037N,
author = {Servat Nyandwi},
title = {Mean {Value} of {Piltz'} {Function} {Over} {Integers} {Free} of {Large} {Prime} {Factors}},
journal = {Publications de l'Institut Math\'ematique},
pages = {37 },
publisher = {mathdoc},
volume = {_N_S_74},
number = {88},
year = {2003},
doi = {10.2298/PIM0374037N},
zbl = {1085.11045},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0374037N/}
}
TY - JOUR AU - Servat Nyandwi TI - Mean Value of Piltz' Function Over Integers Free of Large Prime Factors JO - Publications de l'Institut Mathématique PY - 2003 SP - 37 VL - _N_S_74 IS - 88 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0374037N/ DO - 10.2298/PIM0374037N LA - en ID - 10_2298_PIM0374037N ER -
%0 Journal Article %A Servat Nyandwi %T Mean Value of Piltz' Function Over Integers Free of Large Prime Factors %J Publications de l'Institut Mathématique %D 2003 %P 37 %V _N_S_74 %N 88 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM0374037N/ %R 10.2298/PIM0374037N %G en %F 10_2298_PIM0374037N
Servat Nyandwi. Mean Value of Piltz' Function Over Integers Free of Large Prime Factors. Publications de l'Institut Mathématique, _N_S_74 (2003) no. 88, p. 37 . doi: 10.2298/PIM0374037N
Cité par Sources :