Semi-riemannian Manifolds Whose Weyl Tensor is a Kulkarni--nomizu Square
Publications de l'Institut Mathématique, _N_S_72 (2002) no. 86, p. 95 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We investigate curvature properties of semi-Riemannian manifolds $(M,g)$, $n\ge 4$, whose Weyl curvature tensor $C$ can be expressed by a Kulkarni--Nomizu square of the tensor $S-\frac{\kappa}{n-1}g$. We investigate also the problem of isometric immersion of such manifolds into space forms.
DOI : 10.2298/PIM0272095G
Classification : 53B20 53B25 53A40 53A60 53C25 53C40
Keywords: semisymmetric manifold, essentially conformally symmetric manifold, hypersurface, almost Grassmann structure
@article{10_2298_PIM0272095G,
     author = {Malgorzata Glogowska},
     title = {Semi-riemannian {Manifolds} {Whose} {Weyl} {Tensor} is a {Kulkarni--nomizu} {Square}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {95 },
     publisher = {mathdoc},
     volume = {_N_S_72},
     number = {86},
     year = {2002},
     doi = {10.2298/PIM0272095G},
     zbl = {1060.53025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0272095G/}
}
TY  - JOUR
AU  - Malgorzata Glogowska
TI  - Semi-riemannian Manifolds Whose Weyl Tensor is a Kulkarni--nomizu Square
JO  - Publications de l'Institut Mathématique
PY  - 2002
SP  - 95 
VL  - _N_S_72
IS  - 86
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0272095G/
DO  - 10.2298/PIM0272095G
LA  - en
ID  - 10_2298_PIM0272095G
ER  - 
%0 Journal Article
%A Malgorzata Glogowska
%T Semi-riemannian Manifolds Whose Weyl Tensor is a Kulkarni--nomizu Square
%J Publications de l'Institut Mathématique
%D 2002
%P 95 
%V _N_S_72
%N 86
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0272095G/
%R 10.2298/PIM0272095G
%G en
%F 10_2298_PIM0272095G
Malgorzata Glogowska. Semi-riemannian Manifolds Whose Weyl Tensor is a Kulkarni--nomizu Square. Publications de l'Institut Mathématique, _N_S_72 (2002) no. 86, p. 95 . doi : 10.2298/PIM0272095G. http://geodesic.mathdoc.fr/articles/10.2298/PIM0272095G/

Cité par Sources :