Semi-riemannian Manifolds Whose Weyl Tensor is a Kulkarni--nomizu Square
Publications de l'Institut Mathématique, _N_S_72 (2002) no. 86, p. 95

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We investigate curvature properties of semi-Riemannian manifolds $(M,g)$, $n\ge 4$, whose Weyl curvature tensor $C$ can be expressed by a Kulkarni--Nomizu square of the tensor $S-\frac{\kappa}{n-1}g$. We investigate also the problem of isometric immersion of such manifolds into space forms.
DOI : 10.2298/PIM0272095G
Classification : 53B20 53B25 53A40 53A60 53C25 53C40
Keywords: semisymmetric manifold, essentially conformally symmetric manifold, hypersurface, almost Grassmann structure
@article{10_2298_PIM0272095G,
     author = {Malgorzata Glogowska},
     title = {Semi-riemannian {Manifolds} {Whose} {Weyl} {Tensor} is a {Kulkarni--nomizu} {Square}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {95 },
     publisher = {mathdoc},
     volume = {_N_S_72},
     number = {86},
     year = {2002},
     doi = {10.2298/PIM0272095G},
     zbl = {1060.53025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0272095G/}
}
TY  - JOUR
AU  - Malgorzata Glogowska
TI  - Semi-riemannian Manifolds Whose Weyl Tensor is a Kulkarni--nomizu Square
JO  - Publications de l'Institut Mathématique
PY  - 2002
SP  - 95 
VL  - _N_S_72
IS  - 86
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2298/PIM0272095G/
DO  - 10.2298/PIM0272095G
LA  - en
ID  - 10_2298_PIM0272095G
ER  - 
%0 Journal Article
%A Malgorzata Glogowska
%T Semi-riemannian Manifolds Whose Weyl Tensor is a Kulkarni--nomizu Square
%J Publications de l'Institut Mathématique
%D 2002
%P 95 
%V _N_S_72
%N 86
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2298/PIM0272095G/
%R 10.2298/PIM0272095G
%G en
%F 10_2298_PIM0272095G
Malgorzata Glogowska. Semi-riemannian Manifolds Whose Weyl Tensor is a Kulkarni--nomizu Square. Publications de l'Institut Mathématique, _N_S_72 (2002) no. 86, p. 95 . doi: 10.2298/PIM0272095G

Cité par Sources :