Semi-riemannian Manifolds Whose Weyl Tensor is a Kulkarni--nomizu Square
Publications de l'Institut Mathématique, _N_S_72 (2002) no. 86, p. 95
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We investigate curvature properties of semi-Riemannian
manifolds $(M,g)$, $n\ge 4$, whose Weyl curvature tensor $C$ can
be expressed by a Kulkarni--Nomizu square of the tensor
$S-\frac{\kappa}{n-1}g$. We investigate also the problem of
isometric immersion of such manifolds into space forms.
DOI :
10.2298/PIM0272095G
Classification :
53B20 53B25 53A40 53A60 53C25 53C40
Keywords: semisymmetric manifold, essentially conformally symmetric manifold, hypersurface, almost Grassmann structure
Keywords: semisymmetric manifold, essentially conformally symmetric manifold, hypersurface, almost Grassmann structure
@article{10_2298_PIM0272095G,
author = {Malgorzata Glogowska},
title = {Semi-riemannian {Manifolds} {Whose} {Weyl} {Tensor} is a {Kulkarni--nomizu} {Square}},
journal = {Publications de l'Institut Math\'ematique},
pages = {95 },
publisher = {mathdoc},
volume = {_N_S_72},
number = {86},
year = {2002},
doi = {10.2298/PIM0272095G},
zbl = {1060.53025},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.2298/PIM0272095G/}
}
TY - JOUR AU - Malgorzata Glogowska TI - Semi-riemannian Manifolds Whose Weyl Tensor is a Kulkarni--nomizu Square JO - Publications de l'Institut Mathématique PY - 2002 SP - 95 VL - _N_S_72 IS - 86 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2298/PIM0272095G/ DO - 10.2298/PIM0272095G LA - en ID - 10_2298_PIM0272095G ER -
%0 Journal Article %A Malgorzata Glogowska %T Semi-riemannian Manifolds Whose Weyl Tensor is a Kulkarni--nomizu Square %J Publications de l'Institut Mathématique %D 2002 %P 95 %V _N_S_72 %N 86 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2298/PIM0272095G/ %R 10.2298/PIM0272095G %G en %F 10_2298_PIM0272095G
Malgorzata Glogowska. Semi-riemannian Manifolds Whose Weyl Tensor is a Kulkarni--nomizu Square. Publications de l'Institut Mathématique, _N_S_72 (2002) no. 86, p. 95 . doi: 10.2298/PIM0272095G
Cité par Sources :