Qualitative analysis of Caputo fractional delayed difference system: a novel delayed discrete fractional sine and cosine-type function
Journal of nonlinear sciences and its applications, Tome 18 (2025) no. 1, p. 43-63.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we provide an explicit solution for the homogeneous fractional delay oscillation difference equation with an order $2{\delta}$ ranging from 1 to 2. This solution is achieved through the construction of discrete sine and cosine-type delayed matrix functions. Subsequently, we employ the discrete Laplace transform technique, a powerful method for handling nonhomogeneous terms, to investigate the solution of the corresponding nonhomogeneous equation. The study then delves into the Ulam-Hyers-type stabilities of the homogeneous equation, leveraging the representation of the solution. To validate the stability theory, we illustrate a numerical example. Finally, we extend our analysis by presenting an exact solution for the nonhomogeneous fractional difference equation with $12{\delta}2$, utilizing the discrete two-parameter delayed sine and cosine-type function.
DOI : 10.22436/jnsa.018.01.05
Classification : 33E12, 34Kxx, 39Axx, 39A06, 44A55
Keywords: Linear system, fractional difference, time-delay, nabla sine cosine, discrete delayed perturbation

Mahmudov, N. I.  1 ; Aydin, M. 2

1 Department of Mathematics, Eastern Mediterranean University, Famagusta 99628 T. R. Northern Cyprus, Mersin 10, Turkey;Research Center of Econophysics, Azerbaijan State University of Economics (UNEC), Istiqlaliyyat Str. 6, Baku 1001, Azerbaijan
2 Department of Medical Services and Techniques, Muradiye Vocational School, Van Yuzuncu Yil University, Van, Turkey
@article{JNSA_2025_18_1_a4,
     author = {Mahmudov, N. I.  and Aydin, M.},
     title = {Qualitative analysis of {Caputo} fractional delayed difference system: a novel delayed discrete fractional sine and cosine-type function},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {43-63},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2025},
     doi = {10.22436/jnsa.018.01.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.018.01.05/}
}
TY  - JOUR
AU  - Mahmudov, N. I. 
AU  - Aydin, M.
TI  - Qualitative analysis of Caputo fractional delayed difference system: a novel delayed discrete fractional sine and cosine-type function
JO  - Journal of nonlinear sciences and its applications
PY  - 2025
SP  - 43
EP  - 63
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.018.01.05/
DO  - 10.22436/jnsa.018.01.05
LA  - en
ID  - JNSA_2025_18_1_a4
ER  - 
%0 Journal Article
%A Mahmudov, N. I. 
%A Aydin, M.
%T Qualitative analysis of Caputo fractional delayed difference system: a novel delayed discrete fractional sine and cosine-type function
%J Journal of nonlinear sciences and its applications
%D 2025
%P 43-63
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.018.01.05/
%R 10.22436/jnsa.018.01.05
%G en
%F JNSA_2025_18_1_a4
Mahmudov, N. I. ; Aydin, M. Qualitative analysis of Caputo fractional delayed difference system: a novel delayed discrete fractional sine and cosine-type function. Journal of nonlinear sciences and its applications, Tome 18 (2025) no. 1, p. 43-63. doi : 10.22436/jnsa.018.01.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.018.01.05/

[1] Abdeljawad, T. Fractional difference operators with discrete generalized Mittag-Leffler kernels, Chaos Solitons Fractals, Volume 126 (2019), pp. 315-324 | Zbl | DOI

[2] Abdeljawad, T.; Baleanu, D. Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels, Adv. Difference Equ., Volume 2016 (2016), pp. 1-18 | DOI

[3] Alzabut, J.; Abdeljawad, T. A generalized discrete fractional Gronwall inequality and its application on the uniqueness of solutions for nonlinear delay fractional difference system, Appl. Anal. Discrete Math., Volume 12 (2018), pp. 36-48 | DOI | Zbl

[4] Atıcı, F. M.; Atıcı, M.; Nguyen, N.; Zhoroev, T.; Koch, G. A study on discrete and discrete fractional pharmacokineticspharmacodynamics models for tumor growth and anti-cancer effects, Comput. Math. Biophys., Volume 7 (2019), pp. 10-24 | DOI | Zbl

[5] Atıcı, F. M.; Eloe, P. W. Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equ., Volume 2009 (2009), pp. 1-12 | Zbl | DOI

[6] Atici, F. M.; Eloe, P. W. Linear systems of fractional nabla difference equations, Rocky Mountain J. Math., Volume 41 (2011), pp. 353-370 | DOI | Zbl

[7] Atıcı, F. M.; Eloe, P.W. Gronwall’s inequality on discrete fractional calculus, Comput. Math. Appl., Volume 64 (2012), pp. 3193-3200 | DOI | Zbl

[8] Aydin, M.; Mahmudov, N. I. Iterative learning control for impulsive fractional order time-delay systems with nonpermutable constant coefficient matrices, Int. J. Adapt. Control Signal Process., Volume 36 (2022), pp. 1419-1438 | DOI | Zbl

[9] Aydin, M.; Mahmudov, N. I. On a study for the neutral Caputo fractional multi-delayed differential equations with noncommutative coefficient matrices, Chaos Solitons Fractals, Volume 161 (2022), pp. 1-11 | DOI | Zbl

[10] Aydin, M.; Mahmudov, N. I. ψ-Caputo type time-delay Langevin equations with two general fractional orders, Math. Methods Appl. Sci., Volume 46 (2023), pp. 9187-9204 | Zbl | DOI

[11] Baleanu, D.; Wu, G.-C. Some further results of the Laplace transform for variable-order fractional difference equations, Fract. Calc. Appl. Anal., Volume 22 (2019), pp. 1641-1654 | Zbl | DOI

[12] Bonilla, B.; Rivero, M.; Trujillo, J. J. On systems of linear fractional differential equations with constant coefficients, Appl. Math. Comput., Volume 187 (2007), pp. 68-78 | DOI | Zbl

[13] Cao, X.; Wang, J. Finite-time stability of a class of oscillating systems with two delays, Math. Methods Appl. Sci., Volume 41 (2018), pp. 4943-4954 | DOI | Zbl

[14] ermák, J. Cˇ; Kisela, T.; Nechvátal, L. DiscreteMittag-Leffler functions in linear fractional difference equations, Abstr. Appl. Anal., Volume 2011 (2011), pp. 1-21 | Zbl | DOI

[15] Cheng, J. Fractional difference equation theory, Xiamen University Press, Xiamen, 2011

[16] Coimbra, C. F. M. Mechanics with variable-order differential operators, Ann. Phys., Volume 12 (2003), pp. 692-703 | Zbl | DOI

[17] Diblík, J.; Feˇckan, M.; Pospíšil, M. Representation of a solution of the Cauchy problem for an oscillating system with two delays and permutable matrices, Ukrainian Math. J., Volume 65 (2013), pp. 64-76 | DOI | Zbl

[18] Diblík, J.; Khusainov, D. Y. Representation of solutions of linear discrete systems with constant coefficients and pure delay, Adv. Difference Equ., Volume 2006 (2006), pp. 1-13 | DOI | Zbl

[19] Diblík, J.; Khusainov, D. Y. Representation of solutions of discrete delayed system x(k + 1) = Ax(k) + Bx(k −m) + f(k) with commutative matrices, J. Math. Anal. Appl., Volume 318 (2006), pp. 63-76 | DOI | Zbl

[20] Diblík, J.; Khusainov, D. Y.; Lukáˇcová, J.; Ružicková, M. Control of oscillating systems with a single delay, Adv. Difference Equ., Volume 2010 (2010), pp. 1-15 | DOI | Zbl

[21] Diblík, J.; Morávková, B. Discrete matrix delayed exponential for two delays and its property, Adv. Difference Equ., Volume 2013 (2013), pp. 1-18 | DOI | Zbl

[22] Diblík, J.; Morávková, B. Representation of the solutions of linear discrete systems with constant coefficients and two delays, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-19 | Zbl | DOI

[23] Diethelm, K. The analysis of fractional differential equations, Springer-Verlag, Berlin, 2010 | DOI

[24] Du, F.; Jia, B. Finite-time stability of a class of nonlinear fractional delay difference systems, Appl. Math. Lett., Volume 98 (2019), pp. 233-239 | Zbl | DOI

[25] Du, F.; Lu, J.-G. Exploring a new discrete delayed Mittag-Leffler matrix function to investigate finite-time stability of Riemann-Liouville fractional-order delay difference systems, Math. Methods Appl. Sci., Volume 45 (2022), pp. 9856-9878 | Zbl | DOI

[26] Eloe, P.; Ouyang, Z. Multi-term linear fractional nabla difference equations with constant coefficients, Int. J. Difference Equ., Volume 10 (2015), pp. 91-106

[27] Goodrich, C.; Peterson, A. C. Discrete fractional calculus, Springer, Cham, 2015 | DOI

[28] Heymans, N.; Podlubny, I. Physical interpretation of initial conditions for fractional differential equations with Riemann- Liouville fractional derivatives, Rheol. Acta, Volume 45 (2006), pp. 765-771 | DOI

[29] Huang, L.-L.; Wu, G.-C.; Baleanu, D.; Wang, H.-Y. Discrete fractional calculus for interval–valued systems, Fuzzy Sets and Systems, Volume 404 (2021), pp. 141-158 | Zbl | DOI

[30] Jia, B.; Erbe, L.; Peterson, A. Comparison theorems and asymptotic behavior of solutions of discrete fractional equations, Electron. J. Qual. Theory Differ. Equ., Volume 2015 (2015), pp. 1-18 | Zbl | DOI

[31] Jia, B.; Erbe, L.; Peterson, A. Comparison theorems and asymptotic behavior of solutions of Caputo fractional equations, Int. J. Difference Equ., Volume 11 (2016), pp. 163-178

[32] Khusainov, D. Y.; Diblík, J.; Ružicková, M.; Lukácová, J. Representation of a solution of the Cauchy problem for an oscillating system with pure delay, Nonlinear Oscill., Volume 11 (2008), pp. 276-285 | Zbl | DOI

[33] Khusainov, D. Y.; Shuklin, G. V. Linear autonomous time-delay system with permutation matrices solving, Stud. Univ. Žilina Math. Ser., Volume 17 (2003), pp. 101-108 | Zbl

[34] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam, 2006

[35] Li, C.; Qian, D.; Chen, Y. On Riemann-Liouville and Caputo derivatives, Discrete Dyn. Nat. Soc., Volume 2011 (2011), pp. 1-15 | DOI

[36] Li, M.; Wang, J. Exploring delayed Mittag-Leffler type matrix functions to study finite time stability of fractional delay differential equations, Appl. Math. Comput., Volume 324 (2018), pp. 254-265 | DOI | Zbl

[37] Liang, C.; Wang, J. Analysis of iterative learning control for an oscillating control system with two delays, Trans. Inst. Meas. Control, Volume 40 (2018), pp. 1757-1765 | DOI

[38] Liang, C.; Wang, J.; O’Regan, D. Controllability of nonlinear delay oscillating systems, Electron. J. Qual. Theory Differ. Equ., Volume 2017 (2017), pp. 1-18 | DOI | Zbl

[39] Liang, C.; Wang, J.; O’Regan, D. Representation of a solution for a fractional linear system with pure delay, Appl. Math. Lett., Volume 77 (2018), pp. 72-78 | DOI | Zbl

[40] Liang, C.; W.Wei; J.Wang Stability of delay differential equations via delayed matrix sine and cosine of polynomial degrees, Adv. Difference Equ., Volume 2017 (2017), pp. 1-17 | DOI | Zbl

[41] Mahmudov, N. I. Representation of solutions of discrete linear delay systems with non permutable matrices, Appl. Math. Lett., Volume 58 (2018), pp. 8-14 | Zbl | DOI

[42] Mahmudov, N. I. Delayed perturbation of Mittag-Leffler functions and their applications to fractional linear delay differential equations, Math. Methods Appl. Sci., Volume 42 (2019), pp. 5489-5497 | Zbl | DOI

[43] Mahmudov, N. I. Appl. Math. Lett., 92 (2019), pp. 41-48 | DOI | Zbl

[44] Mahmudov, N. I. Delayed linear difference equations: the method of Z-transform, Electron. J. Qual. Theory Differ. Equ., Volume 2020 (2020), pp. 1-12 | DOI | Zbl

[45] Mahmudov, N. I.; Aydın, M. Representation of solutions of nonhomogeneous conformable fractional delay differential equations, Chaos Solitons Fractals, Volume 150 (2021), pp. 1-8 | DOI | Zbl

[46] Obembe, A. D.; Hossain, M. Enamul; Abu-Khamsin, S. A. Variable-order derivative time fractional diffusion model for heterogeneous porous media, J. Pet. Sci. Eng., Volume 152 (2017), pp. 391-405 | DOI

[47] Pospíšil, M. Representation of solutions of delayed difference equations with linear parts given by pairwise permutable matrices via Z-transform, Appl. Math. Comput., Volume 294 (2017), pp. 180-194 | DOI | Zbl

[48] Sweilam, N. H.; Al-Mekhlafi, S. M. Numerical study for multi-strain tuberculosis (TB) model of variable-order fractional derivatives, J. Adv. Res., Volume 7 (2016), pp. 271-283 | DOI

[49] Tarasov, V. E. Handbook of fractional calculus with applications,, De Gruyter, Berlin, 2019 | DOI

[50] Wu, G.-C.; Abdeljawad, T.; Liu, J.; Baleanu, D.; Wu, K.-T. Mittag-Leffler stability analysis of fractional discrete-time neural networks via fixed point technique, Nonlinear Anal. Model. Control, Volume 24 (2019), pp. 919-936 | Zbl | DOI

[51] Wu, G.-C.; Baleanu, D.; Luo, W.-H. Lyapunov functions for Riemann-Liouville-like fractional difference equations, Appl. Math. Comput., Volume 314 (2017), pp. 228-236 | DOI | Zbl

[52] Wu, G.-C.; Baleanu, D.; Zeng, S.-D. Finite-time stability of discrete fractional delay systems: Gronwall inequality and stability criterion, Commun. Nonlinear Sci. Numer. Simul., Volume 57 (2018), pp. 299-308 | DOI | Zbl

[53] Wu, G.-C.; Deng, Z.-G.; Baleanu, D.; Zeng, D.-Q. New variable-order fractional chaotic systems for fast image encryption, Chaos, Volume 29 (2019), pp. 1-11 | Zbl | DOI

Cité par Sources :