Voir la notice de l'article provenant de la source International Scientific Research Publications
Lagad, A. 1 ; Ingle, R. N.  2 ; Reddy, P. T.  3
@article{JNSA_2025_18_1_a3, author = {Lagad, A. and Ingle, R. N. and Reddy, P. T. }, title = {On a subclass of analytic functions defined by {Bell} distribution series}, journal = {Journal of nonlinear sciences and its applications}, pages = {33-42}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2025}, doi = {10.22436/jnsa.018.01.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.018.01.04/} }
TY - JOUR AU - Lagad, A. AU - Ingle, R. N. AU - Reddy, P. T. TI - On a subclass of analytic functions defined by Bell distribution series JO - Journal of nonlinear sciences and its applications PY - 2025 SP - 33 EP - 42 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.018.01.04/ DO - 10.22436/jnsa.018.01.04 LA - en ID - JNSA_2025_18_1_a3 ER -
%0 Journal Article %A Lagad, A. %A Ingle, R. N. %A Reddy, P. T. %T On a subclass of analytic functions defined by Bell distribution series %J Journal of nonlinear sciences and its applications %D 2025 %P 33-42 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.018.01.04/ %R 10.22436/jnsa.018.01.04 %G en %F JNSA_2025_18_1_a3
Lagad, A.; Ingle, R. N. ; Reddy, P. T. . On a subclass of analytic functions defined by Bell distribution series. Journal of nonlinear sciences and its applications, Tome 18 (2025) no. 1, p. 33-42. doi : 10.22436/jnsa.018.01.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.018.01.04/
[1] Consolidation of a Certain Discrete Probability Distribution with a Subclass of Bi-Univalent Functions Involving Gegenbauer Polynomials, Math. Probl. Eng., Volume 2022 (2022), pp. 1-6 | DOI
[2] Exploiting the Pascal Distribution Series and Gegenbauer Polynomials to Construct and Study a New Subclass of Analytic Bi-Univalent Functions, Symmetry, Volume 14 (2022), pp. 1-8 | DOI
[3] Collection of Bi-Univalent Functions Using Bell Distribution Associated With Jacobi Polynomials, Int. J. Neutrosophic Sci. (IJNS), Volume 25 (2025), pp. 228-238
[4] Introduction to Probability and Mathematical Statistics, Duxburry Press:, Belmont, CA, USA, 1992
[5] Exponential polynomials, Ann. of Math. (2), Volume 35 (1934), pp. 258-277 | Zbl | DOI
[6] Exponential numbers, Amer. Math. Monthly, Volume 41 (1934), pp. 411-419 | DOI
[7] On the Bell distribution and its associated regression model for count data, Appl. Math. Model., Volume 56 (2018), pp. 172-185 | Zbl | DOI
[8] Neighborhood properties of generalized Bessel function, Glob. J. Sci. Front. Res., Volume 15 (2015), pp. 21-26
[9] Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., Volume 8 (1957), pp. 598-601 | DOI
[10] On uniformly convex functions, Ann. Polon. Math., Volume 56 (1991), pp. 87-92 | DOI
[11] Applications of q-derivative operator to subclasses of bi-univalent functions involving Gegenbauer polynomials, Appl. Math. Sci. Eng., Volume 30 (2022), pp. 501-520 | DOI
[12] Conic regions and k-uniform convexity, J. Comput. Appl. Math., Volume 105 (1999), pp. 327-336 | Zbl | DOI
[13] Neighborhoods of certain classes of analytic functions defined by Miller-Ross function, Cauc. J. Sci., Volume 8 (2021), pp. 165-172 | DOI
[14] On Inequalities in the Theory of Functions, Proc. London Math. Soc. (2), Volume 23 (1925), pp. 481-519 | DOI
[15] A unified class of analytic functions with negative coefficients involving the Hurwitz-Lerch zeta function, Bull. Math. Anal. Appl., Volume 1 (2009), pp. 71-84 | Zbl
[16] Subordination results for a class of analytic functions involving the Hurwitz-Lerch zeta function, Int. J. Nonlinear Sci., Volume 10 (2010), pp. 430-437 | Zbl
[17] Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., Volume 118 (1993), pp. 189-196 | DOI | Zbl
[18] On uniform starlikeness and related Properties of univalent functions, Complex Variables Theory Appl., Volume 24 (1994), pp. 233-239 | Zbl | DOI
[19] Neighborhoods of univalent functions, Proc. Amer. Math. Soc., Volume 81 (1981), pp. 521-527 | DOI
[20] Coefficient estimates for a subclass of meromorphic multivalent -close-to-convex functions, Symmetry, Volume 13 (2021), pp. 1-12 | DOI
[21] Univalent functions with negative coefficients, Proc. Amer. Math. Soc., Volume 51 (1975), pp. 109-116 | DOI
[22] A survey with open problems on univalent functions whose coefficients are negative, Rocky Mountain J. Math., Volume 21 (1991), pp. 1099-1125 | DOI | Zbl
[23] Integral means for univalent function with negative coefficients, Houston J. Math., Volume 23 (1997), pp. 169-174 | Zbl
[24] A certain subclass of uniformly convex functions defined by Bessel functions, Proyecciones, Volume 38 (2019), pp. 719-731 | Zbl
[25] Applications of q- Hermite Polynomials to subclasses of analytic and Bi-Univalent functions, Fractal Fract., Volume 6 (2022), pp. 1-15 | DOI
Cité par Sources :