Separating hyperplane theorems in convex metric spaces
Journal of nonlinear sciences and its applications, Tome 18 (2025) no. 1, p. 29-32.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The purpose of this note is to establish a theorem akin to Mazur's theorem concerning separating hyperplanes within convex metric spaces.
DOI : 10.22436/jnsa.018.01.03
Classification : 52A05, 46N10, 52B11
Keywords: Hahn Banach theorem, Mazur theorem, separating hyperplane, convexity

Beg, I. 1

1 Department of Mathematics and Statistical Sciences, Lahore School of Economics, Lahore 53200, Pakistan
@article{JNSA_2025_18_1_a2,
     author = {Beg, I.},
     title = {Separating hyperplane theorems in convex metric spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {29-32},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2025},
     doi = {10.22436/jnsa.018.01.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.018.01.03/}
}
TY  - JOUR
AU  - Beg, I.
TI  - Separating hyperplane theorems in convex metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2025
SP  - 29
EP  - 32
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.018.01.03/
DO  - 10.22436/jnsa.018.01.03
LA  - en
ID  - JNSA_2025_18_1_a2
ER  - 
%0 Journal Article
%A Beg, I.
%T Separating hyperplane theorems in convex metric spaces
%J Journal of nonlinear sciences and its applications
%D 2025
%P 29-32
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.018.01.03/
%R 10.22436/jnsa.018.01.03
%G en
%F JNSA_2025_18_1_a2
Beg, I. Separating hyperplane theorems in convex metric spaces. Journal of nonlinear sciences and its applications, Tome 18 (2025) no. 1, p. 29-32. doi : 10.22436/jnsa.018.01.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.018.01.03/

[1] Aliprantis, C. D.; Border, K. C. Infinite dimensional analysis, Springer, Berlin, 2006 | DOI

[2] Bair, J. Separation of two convex sets in convexity spaces and in straight line spaces, J. Math. Anal. Appl., Volume 49 (1975), pp. 696-704 | DOI | Zbl

[3] Beg, I. Representation of a preference relation on convex metric spaces by a numerical function, Proc. Rom. Acad. Ser. A, Volume 24 (2023), pp. 19-25

[4] Beg, I. Faces in convex metric spaces, Proc. Rom. Acad. Ser. A, Volume 24 (2023), pp. 321-327

[5] Chepoi, V. Separation of two convex sets in convexity structures, J. Geom., Volume 50 (1994), pp. 30-51 | DOI | Zbl

[6] Klee, V. L.; Jr. Convex sets in linear spaces, Duke Math. J., Volume 18 (1951), pp. 443-466

[7] Rockafellar, R. T. Convex analysis, Princeton University Press, Princeton, NJ, 1970

[8] Shimizu, T.; Takahashi, W. Fixed points of multivalued mappings in certain convex metric spaces, Topol. Methods Nonlinear Anal., Volume 8 (1996), pp. 197-203 | Zbl | DOI

[9] Takahashi, W. A convexity in metric space and nonexpansive mappings. I, K¯odai Math. Sem. Rep., Volume 22 (1970), pp. 142-149 | Zbl

[10] Vel, M. Van de Pseudo boundaries and pseudo interiors for topological convexities, Dissertationes Math., Volume 210 (1983), pp. 1-73 | Zbl

Cité par Sources :