Voir la notice de l'article provenant de la source International Scientific Research Publications
Beg, I. 1
@article{JNSA_2025_18_1_a2, author = {Beg, I.}, title = {Separating hyperplane theorems in convex metric spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {29-32}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2025}, doi = {10.22436/jnsa.018.01.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.018.01.03/} }
TY - JOUR AU - Beg, I. TI - Separating hyperplane theorems in convex metric spaces JO - Journal of nonlinear sciences and its applications PY - 2025 SP - 29 EP - 32 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.018.01.03/ DO - 10.22436/jnsa.018.01.03 LA - en ID - JNSA_2025_18_1_a2 ER -
Beg, I. Separating hyperplane theorems in convex metric spaces. Journal of nonlinear sciences and its applications, Tome 18 (2025) no. 1, p. 29-32. doi : 10.22436/jnsa.018.01.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.018.01.03/
[1] Infinite dimensional analysis, Springer, Berlin, 2006 | DOI
[2] Separation of two convex sets in convexity spaces and in straight line spaces, J. Math. Anal. Appl., Volume 49 (1975), pp. 696-704 | DOI | Zbl
[3] Representation of a preference relation on convex metric spaces by a numerical function, Proc. Rom. Acad. Ser. A, Volume 24 (2023), pp. 19-25
[4] Faces in convex metric spaces, Proc. Rom. Acad. Ser. A, Volume 24 (2023), pp. 321-327
[5] Separation of two convex sets in convexity structures, J. Geom., Volume 50 (1994), pp. 30-51 | DOI | Zbl
[6] Convex sets in linear spaces, Duke Math. J., Volume 18 (1951), pp. 443-466
[7] Convex analysis, Princeton University Press, Princeton, NJ, 1970
[8] Fixed points of multivalued mappings in certain convex metric spaces, Topol. Methods Nonlinear Anal., Volume 8 (1996), pp. 197-203 | Zbl | DOI
[9] A convexity in metric space and nonexpansive mappings. I, K¯odai Math. Sem. Rep., Volume 22 (1970), pp. 142-149 | Zbl
[10] Pseudo boundaries and pseudo interiors for topological convexities, Dissertationes Math., Volume 210 (1983), pp. 1-73 | Zbl
Cité par Sources :