The method of formal series: applications to nonlinear beam dynamics and invariants of motion
Journal of nonlinear sciences and its applications, Tome 18 (2025) no. 1, p. 1-19.

Voir la notice de l'article provenant de la source International Scientific Research Publications

A novel technique to determine invariant curves in nonlinear beam dynamics based on the method of formal series has been developed. It is first shown how the solution of the Hamilton equations of motion describing nonlinear betatron oscillations in the presence of a single sextupole can be represented in a nonperturbative form. Further, the solution of the Hamilton-Jacobi equation is obtained in a closed symbolic form as a ratio of two series in the perturbation parameter (and the nonlinear action invariant), rather than a conventional power series according to canonical perturbation theory. It is well behaved even for large values of the perturbation parameter close to strong structural resonances. The relationship between existing invariant curves and the so-called scattering orbits in classical scattering theory has been revealed.
DOI : 10.22436/jnsa.018.01.01
Classification : 70H05, 70H20, 70K60
Keywords: Cyclic accelerators, nonlinear beam dynamics, nonperturbative methods

Tzenov, Stephan I. 1

1 Veksler and Baldin Laboratory for High Energy Physics, Joint Institute for Nuclear Research, 6 Joliot-Curie Street, Dubna, Moscow Region, 141980, Russian Federation;Zhangjiang Laboratory, 99 Haike Rd., Pudong New District, Shanghai, China
@article{JNSA_2025_18_1_a0,
     author = {Tzenov, Stephan I.},
     title = {The method of formal series: applications to nonlinear beam dynamics and invariants of motion},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1-19},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2025},
     doi = {10.22436/jnsa.018.01.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.018.01.01/}
}
TY  - JOUR
AU  - Tzenov, Stephan I.
TI  - The method of formal series: applications to nonlinear beam dynamics and invariants of motion
JO  - Journal of nonlinear sciences and its applications
PY  - 2025
SP  - 1
EP  - 19
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.018.01.01/
DO  - 10.22436/jnsa.018.01.01
LA  - en
ID  - JNSA_2025_18_1_a0
ER  - 
%0 Journal Article
%A Tzenov, Stephan I.
%T The method of formal series: applications to nonlinear beam dynamics and invariants of motion
%J Journal of nonlinear sciences and its applications
%D 2025
%P 1-19
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.018.01.01/
%R 10.22436/jnsa.018.01.01
%G en
%F JNSA_2025_18_1_a0
Tzenov, Stephan I. The method of formal series: applications to nonlinear beam dynamics and invariants of motion. Journal of nonlinear sciences and its applications, Tome 18 (2025) no. 1, p. 1-19. doi : 10.22436/jnsa.018.01.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.018.01.01/

[1] Baker, G. A.; Jr.; Graves-Morris, P. Padé approximants, Cambridge University Press, Cambridge, 1996 | DOI

[2] Bazzani, A.; Servizi, G.; Todesco, E.; Turchetti, G. A normal form approach to the theory of nonlinear betatronic motion, CERN Yellow Reports: Monographs (CERN-94-02), Geneva, 1994

[3] Berz, M. Modern Map Methods in Beam Physics, Academic Press, New York, 1999

[4] Chao, A. W. Special Topics in Accelerator Physics, World Scientific, Singapore, 2022

[5] Chirikov, B. V. Resonance processes in magnetic traps, J. Nucl. Energy, Part C Plasma Phys. Accel. Thermonucl. Res., Volume 1 (1960), pp. 253-260

[6] Delamotte, B. Nonperturbative (but approximate) method for solving differential equations and finding limit cycles, Phys. Rev. Lett., Volume 70 (1993), pp. 3361-3364 | Zbl | DOI

[7] Deprit, A. Canonical transformations depending on a small parameter, Celestial Mech., Volume 1 (1969/70), pp. 12-30 | Zbl | DOI

[8] Dragt, A. J. Lectures on nonlinear orbit dynamics, AIP Conf. Proc., Volume 87 (1982), pp. 147-313

[9] Dragt, A. J. Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics, University of Maryland, College Park, 2011

[10] Dragt, A. J.; Finn, J. M. Lie series and invariant functions for analytic symplectic maps, J. Math. Phys., Volume 17 (1976), pp. 2215-2227 | DOI | Zbl

[11] Dragt, A. J.; Forest, E. Computation of nonlinear behavior of Hamiltonian systems using Lie algebraic methods, J. Math. Phys., Volume 24 (1983), pp. 2734-2744 | Zbl | DOI

[12] Dubois-Violette, M. On the functional formalism in quantum field theory, Nuovo Cimento B, Volume 62 (1969), pp. 235-246 | DOI

[13] Dubois-Violette, M. Theory of Formal Series with Applications to Quantum Field Theory, J. Math. Phys., Volume 11 (1970), pp. 2539-2546 | DOI

[14] Dubois-Violette, M. Méthode formelle de solution d’équations non-linéaires, Int. J. Non-Linear Mech., Volume 5 (1970), pp. 311-323 | Zbl | DOI

[15] Dunn, M. R. The Volterra Series and its Application, CreateSpace Independent Publishing Platform, Scotts Valley, 2015

[16] Dunnett, D. A.; Laing, E. W.; Taylor, J. B. Invariants in the motion of a charged particle in a spatially modulated magnetic field, J. Math. Phys., Volume 9 (1968), pp. 1819-1823 | DOI

[17] Forest, E. Beam Dynamics: A New Attitude and Framework, CRC Press, London, 1998 | DOI | Zbl

[18] Gustavson, F. G. On Constructing Formal Integrals of a Hamiltonian System Near an Equilibrium Point, Astron. J., Volume 71 (1966), pp. 670-686

[19] Hénon, M. Numerical Study of Quadratic Area-Preserving Mappings, Quart. Appl. Math., Volume 27 (1969), pp. 291-312 | Zbl | DOI

[20] Hori, G. Theory of general perturbation with unspecified canonical variable, Publ. Astron. Soc. Jpn., Volume 18 (1966), pp. 287-296

[21] Kemble, E. C. The fundamental principles of quantum mechanics with elementary applications, Dover Publications, New York, 1958

[22] Kevorkian, J.; Cole, J. D. Multiple scale and singular perturbation methods, Springer-Verlag, New York, 1996 | DOI

[23] Lichtenberg, A. J.; Lieberman, M. A. Regular and Chaotic Dynamics, Springer-Verlag, New York, 1992 | DOI

[24] Lindstedt, A. Bemerkungen zur Integration einer gewissen Differentialgleichung, Astron. Nachr., Volume 103 (1882), pp. 257-268

[25] Lyapunov, A. M. Problème général de la stabilité du mouvement, Annales de la Faculté des Sciences de Toulouse, Volume 9 (1907), pp. 203-469 | Zbl | mathdoc-id

[26] Poincare, H. J. Sur le problème des trois corps et les équations de la dynamique, Acta Math., Volume 13 (1890), pp. 1-3

[27] Poincare, H. Les Methodes Nouvelles de la Mechanique Celeste, Gauthier-Villars, Paris, 1893

[28] Prudnikov, A. P.; Brychkov, Y. A.; Marichev, O. I. Integrals and Series, Volume 1, Elementary Functions, Gordon & Breach Sci. Publ., New York, 1986

[29] Regge, T. Introduction to complex orbital momenta, Nuovo Cimento, Volume 14 (1959), pp. 951-976 | DOI | Zbl

[30] Rowe, E. G. P. The Hamilton-Jacobi equation for Coulomb scattering, Amer. J. Phys., Volume 53 (1985), pp. 997-1000 | DOI

[31] Tzenov, S. I. The method of formal series of Dubois-Violette as a non perturbative tool for the analysis of nonlinear beam dynamics, AIP Conf. Proc., Volume 344 (1995), pp. 237-248 | DOI

[32] Tzenov, S. I. Contemporary accelerator physics, World Scientific Publishing Co., Singapore, 2004 | Zbl | DOI

[33] Tzenov, S. I. Nonlinear waves and coherent structures in quasi-neutral plasmas excited by external electromagnetic radiation, Phys. Plasmas, Volume 24 (2017), pp. 1-10 | DOI

[34] Tzenov, S. I. Relativistic nonlinear whistler waves in cold magnetized plasmas, Plasma Res. Express, Volume 1 (2018), pp. 1-14 | DOI

[35] Whittaker, E. T.; Watson, G. N. A course of modern analysis, Cambridge University Press, New York, 1962

[36] Williams, A. C. Hamilton-Jacobi expansion of the scattering amplitude, Int. J. Theoret. Phys., Volume 22 (1983), pp. 219-235 | DOI | Zbl

[37] Yamaguchi, Y. Y.; Nambu, Y. Renormalization group method and canonical perturbation theory, arXiv:chaodyn/ 9902013, Volume 1999 (1999), pp. 1-6 | DOI

Cité par Sources :