Voir la notice de l'article provenant de la source International Scientific Research Publications
Tzenov, Stephan I. 1
@article{JNSA_2025_18_1_a0, author = {Tzenov, Stephan I.}, title = {The method of formal series: applications to nonlinear beam dynamics and invariants of motion}, journal = {Journal of nonlinear sciences and its applications}, pages = {1-19}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2025}, doi = {10.22436/jnsa.018.01.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.018.01.01/} }
TY - JOUR AU - Tzenov, Stephan I. TI - The method of formal series: applications to nonlinear beam dynamics and invariants of motion JO - Journal of nonlinear sciences and its applications PY - 2025 SP - 1 EP - 19 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.018.01.01/ DO - 10.22436/jnsa.018.01.01 LA - en ID - JNSA_2025_18_1_a0 ER -
%0 Journal Article %A Tzenov, Stephan I. %T The method of formal series: applications to nonlinear beam dynamics and invariants of motion %J Journal of nonlinear sciences and its applications %D 2025 %P 1-19 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.018.01.01/ %R 10.22436/jnsa.018.01.01 %G en %F JNSA_2025_18_1_a0
Tzenov, Stephan I. The method of formal series: applications to nonlinear beam dynamics and invariants of motion. Journal of nonlinear sciences and its applications, Tome 18 (2025) no. 1, p. 1-19. doi : 10.22436/jnsa.018.01.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.018.01.01/
[1] Padé approximants, Cambridge University Press, Cambridge, 1996 | DOI
[2] A normal form approach to the theory of nonlinear betatronic motion, CERN Yellow Reports: Monographs (CERN-94-02), Geneva, 1994
[3] Modern Map Methods in Beam Physics, Academic Press, New York, 1999
[4] Special Topics in Accelerator Physics, World Scientific, Singapore, 2022
[5] Resonance processes in magnetic traps, J. Nucl. Energy, Part C Plasma Phys. Accel. Thermonucl. Res., Volume 1 (1960), pp. 253-260
[6] Nonperturbative (but approximate) method for solving differential equations and finding limit cycles, Phys. Rev. Lett., Volume 70 (1993), pp. 3361-3364 | Zbl | DOI
[7] Canonical transformations depending on a small parameter, Celestial Mech., Volume 1 (1969/70), pp. 12-30 | Zbl | DOI
[8] Lectures on nonlinear orbit dynamics, AIP Conf. Proc., Volume 87 (1982), pp. 147-313
[9] Lie Methods for Nonlinear Dynamics with Applications to Accelerator Physics, University of Maryland, College Park, 2011
[10] Lie series and invariant functions for analytic symplectic maps, J. Math. Phys., Volume 17 (1976), pp. 2215-2227 | DOI | Zbl
[11] Computation of nonlinear behavior of Hamiltonian systems using Lie algebraic methods, J. Math. Phys., Volume 24 (1983), pp. 2734-2744 | Zbl | DOI
[12] On the functional formalism in quantum field theory, Nuovo Cimento B, Volume 62 (1969), pp. 235-246 | DOI
[13] Theory of Formal Series with Applications to Quantum Field Theory, J. Math. Phys., Volume 11 (1970), pp. 2539-2546 | DOI
[14] Méthode formelle de solution d’équations non-linéaires, Int. J. Non-Linear Mech., Volume 5 (1970), pp. 311-323 | Zbl | DOI
[15] The Volterra Series and its Application, CreateSpace Independent Publishing Platform, Scotts Valley, 2015
[16] Invariants in the motion of a charged particle in a spatially modulated magnetic field, J. Math. Phys., Volume 9 (1968), pp. 1819-1823 | DOI
[17] Beam Dynamics: A New Attitude and Framework, CRC Press, London, 1998 | DOI | Zbl
[18] On Constructing Formal Integrals of a Hamiltonian System Near an Equilibrium Point, Astron. J., Volume 71 (1966), pp. 670-686
[19] Numerical Study of Quadratic Area-Preserving Mappings, Quart. Appl. Math., Volume 27 (1969), pp. 291-312 | Zbl | DOI
[20] Theory of general perturbation with unspecified canonical variable, Publ. Astron. Soc. Jpn., Volume 18 (1966), pp. 287-296
[21] The fundamental principles of quantum mechanics with elementary applications, Dover Publications, New York, 1958
[22] Multiple scale and singular perturbation methods, Springer-Verlag, New York, 1996 | DOI
[23] Regular and Chaotic Dynamics, Springer-Verlag, New York, 1992 | DOI
[24] Bemerkungen zur Integration einer gewissen Differentialgleichung, Astron. Nachr., Volume 103 (1882), pp. 257-268
[25] Problème général de la stabilité du mouvement, Annales de la Faculté des Sciences de Toulouse, Volume 9 (1907), pp. 203-469 | Zbl | mathdoc-id
[26] Sur le problème des trois corps et les équations de la dynamique, Acta Math., Volume 13 (1890), pp. 1-3
[27] Les Methodes Nouvelles de la Mechanique Celeste, Gauthier-Villars, Paris, 1893
[28] Integrals and Series, Volume 1, Elementary Functions, Gordon & Breach Sci. Publ., New York, 1986
[29] Introduction to complex orbital momenta, Nuovo Cimento, Volume 14 (1959), pp. 951-976 | DOI | Zbl
[30] The Hamilton-Jacobi equation for Coulomb scattering, Amer. J. Phys., Volume 53 (1985), pp. 997-1000 | DOI
[31] The method of formal series of Dubois-Violette as a non perturbative tool for the analysis of nonlinear beam dynamics, AIP Conf. Proc., Volume 344 (1995), pp. 237-248 | DOI
[32] Contemporary accelerator physics, World Scientific Publishing Co., Singapore, 2004 | Zbl | DOI
[33] Nonlinear waves and coherent structures in quasi-neutral plasmas excited by external electromagnetic radiation, Phys. Plasmas, Volume 24 (2017), pp. 1-10 | DOI
[34] Relativistic nonlinear whistler waves in cold magnetized plasmas, Plasma Res. Express, Volume 1 (2018), pp. 1-14 | DOI
[35] A course of modern analysis, Cambridge University Press, New York, 1962
[36] Hamilton-Jacobi expansion of the scattering amplitude, Int. J. Theoret. Phys., Volume 22 (1983), pp. 219-235 | DOI | Zbl
[37] Renormalization group method and canonical perturbation theory, arXiv:chaodyn/ 9902013, Volume 1999 (1999), pp. 1-6 | DOI
Cité par Sources :