New types of convergence of double sequences in neutrosophic fuzzy $G$-metric spaces
Journal of nonlinear sciences and its applications, Tome 17 (2024) no. 4, p. 150-179.

Voir la notice de l'article provenant de la source International Scientific Research Publications

‎In this study‎, ‎we present statistical convergence‎, ‎statistical limit points‎, ‎and statistical cluster points of double sequences in neutrosophic fuzzy‎ ‎$G$-metric space with order $q$‎, ‎extending the notion of neutrosophic fuzzy‎ ‎metric space‎. ‎We support our assertions with relevant theorems and elucidate‎ ‎them through illustrative examples‎. ‎Following the establishment of statistical‎ ‎convergence and the scrutiny of its properties within these spaces‎, ‎we explore‎ ‎the concepts of lacunary statistical convergence and strongly lacunary‎ ‎convergence of double sequences‎, ‎while also investigating the relationships‎ ‎among them‎. ‎
DOI : 10.22436/jnsa.017.04.01
Classification : 40G15, 40A05, 03B52, 03E72
Keywords: Neutrosophic normed spaces, \(g\)-metric space, statistical convergence, statistical Cauchy sequence, statistical limit points, statistical cluster points

Khan, V. A. 1 ; Kisi, O. 2 ; Akbiyik, R. 2

1 Department of Mathematics‎, Aligarh Muslim University, Aligarh-202002, Uttar‎ ‎Pradesh, ‎India
2 Department of Mathematics, Bartın University, Bartın-74100, Turkey
@article{JNSA_2024_17_4_a0,
     author = {Khan, V. A. and Kisi, O. and Akbiyik, R.},
     title = {New types of convergence of double sequences in neutrosophic fuzzy {\(G\)-metric} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {150-179},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2024},
     doi = {10.22436/jnsa.017.04.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.04.01/}
}
TY  - JOUR
AU  - Khan, V. A.
AU  - Kisi, O.
AU  - Akbiyik, R.
TI  - New types of convergence of double sequences in neutrosophic fuzzy \(G\)-metric spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2024
SP  - 150
EP  - 179
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.04.01/
DO  - 10.22436/jnsa.017.04.01
LA  - en
ID  - JNSA_2024_17_4_a0
ER  - 
%0 Journal Article
%A Khan, V. A.
%A Kisi, O.
%A Akbiyik, R.
%T New types of convergence of double sequences in neutrosophic fuzzy \(G\)-metric spaces
%J Journal of nonlinear sciences and its applications
%D 2024
%P 150-179
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.04.01/
%R 10.22436/jnsa.017.04.01
%G en
%F JNSA_2024_17_4_a0
Khan, V. A.; Kisi, O.; Akbiyik, R. New types of convergence of double sequences in neutrosophic fuzzy \(G\)-metric spaces. Journal of nonlinear sciences and its applications, Tome 17 (2024) no. 4, p. 150-179. doi : 10.22436/jnsa.017.04.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.04.01/

[1] Abazari, R. Statistical convergence in probabilistic generalized metric spaces wrt strong topology, J. Inequal. Appl., Volume 2021 (2021), pp. 1-11 | DOI

[2] Atanassov, K. T. Intuitionistic fuzzy sets, Fuzzy Sets and Systems, Volume 20 (1986), pp. 87-96 | DOI

[3] Bera, T.; Mahapatra, N. K. On neutrosophic soft linear space, Fuzzy Inf. Eng., Volume 9 (2017), pp. 299-324 | DOI

[4] Bera, T.; Mahapatra, N. K. Neutrosophic soft normed linear spaces, Neutrosophic Sets Syst., Volume 23 (2018), pp. 52-71

[5] akan, C. C¸; Altay, B.; os¸kun, H. C¸ Double lacunary density and lacunary statistical convergence of double sequences, Studia Sci. Math. Hungar., Volume 47 (2010), pp. 35-45 | Zbl | DOI

[6] Choi, H.; Kim, S.; Yang, S. Y. Structure for 1-metric spaces and related fixed point theorems, arXiv preprint arXiv:1804.03651 (2018), pp. 1-41 | DOI

[7] Deng, Z. Fuzzy pseudo-metric spaces, J. Math. Anal. Appl., Volume 86 (1982), pp. 74-95 | DOI | Zbl

[8] Dhage, B. C. A study of some fixed point theorems, Ph.D. Thesis, Marathwada Univ. Aurangabad (1984)

[9] undar, E. D¨; Altay, B. On some properties of I2-convergence and I2-Cauchy of double sequences, Gen. Math. Notes, Volume 7 (2011), pp. 1-12

[10] Du¨ndar, E.; Talo, O¨ . I2-Cauchy double sequences of fuzzy numbers, Gen. Math. Notes, Volume 16 (2013), pp. 103-114

[11] Du¨ndar, E.; Talo, O¨ .; Bas¸ar, F. Regularly I2-convergence and regularly I2-Cauchy double sequences of fuzzy numbers, Int. J. Anal., Volume 2013 (2013), pp. 1-7

[12] Fast, H. Sur la convergence statistique, Colloq. Math., Volume 2 (1951), pp. 241-244 | DOI | Zbl

[13] Fridy, J. A.; Orhan, C. Lacunary statistical convergence, Pacific J. Math., Volume 160 (1993), pp. 43-51

[14] G¨ahler, S. 2-metrische R¨aume und ihre topologische Struktur, Math. Nachr., Volume 26 (1963), pp. 115-148 | DOI | Zbl

[15] George, A.; Veeramani, P. On some results in fuzzy metric spaces, Fuzzy Sets and Systems, Volume 64 (1994), pp. 395-399 | DOI

[16] Grabiec, M. Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, Volume 27 (1988), pp. 385-389 | DOI

[17] rdal, M. Gu¨; Kis¸i, O¨ .; Kolancı, S. New convergence definitions for double sequences in g-metrıc spaces, J. Classical Anal., Volume 21 (2023), pp. 173-185 | Zbl

[18] uzey, S. Y. G ¨; undar, E. D¨; Arslan, M. I2-uniform convergence of double sequences of functions in 2-normed spaces, Commun. Adv. Math. Sci., Volume 5 (2022), pp. 150-160 | DOI

[19] Ha, K. S.; Cho, Y. J.; Kim, S. S.; White, A. On strictly convex and 2-convex 2-normed spaces, Math. Japonica, Volume 33 (1988), pp. 375-384

[20] Hazarika, B.; Alotaibi, A.; Mohiuddine, S. A. Statistical convergence in measure for double sequences of fuzzy-valued functions, Soft Comput., Volume 24 (2020), pp. 6613-6622 | Zbl | DOI

[21] Khan, V. A.; Faisal, M. Tauberian theorems for Ces`aro summability in neutrosophic normed spaces, Filomat, Volume 37 (2023), pp. 3411-3426 | DOI

[22] Khan, V. A.; Khan, M. D.; Ahmad, M. Some new type of lacunary statistically convergent sequences in neutrosophic normed space, Neutrosophic Sets Syst., Volume 42 (2021), pp. 239-252

[23] Khan, V. A.; Khan, M. D.; Kumar, A. Statistical convergence of sequences of functions in neutrosophic normed spaces, Numer. Funct. Anal. Optim., Volume 44 (2023), pp. 1443-1463 | DOI

[24] Khan, V. A.; Rahaman, S. K. A. Statistical convergence in intuitionistic fuzzy G-metric spaces with order n, Filomat, Volume 38 (2024), pp. 2785-2812 | DOI

[25] Khan, V. A.; Rahaman, S. K. A.; Hazarika, B.; Alam, M. Rough lacunary statistical convergence in neutrosophic normed spaces, J. Intell. Fuzzy Syst., Volume 45 (2023), pp. 7335-7351

[26] Khan, V. A.; Tuba, U.; Rahaman, S. K. A. Motivations and basics of fuzzy, intuitionistic fuzzy and neutrosophic sets and norms, Yugosl. J. Oper. Res., Volume 32 (2022), pp. 299-323 | DOI

[27] Kiris¸ci, M.; S¸ims¸ek, N. Neutrosophic metric spaces, Math. Sci. (Springer), Volume 14 (2020), pp. 241-248 | DOI

[28] Kis¸i, O¨ .; Du¨ndar, E. I2-uniformly convergence of double sequences of fuzzy valued functions, Acta Math. Univ. Comenian. (N.S.), Volume 91 (2022), pp. 281-300 | Zbl

[29] Kramosil, I.; Mich´alek, J. Fuzzy metrics and statistical metric spaces, Kybernetika (Prague), Volume 11 (1975), pp. 336-344 | Zbl

[30] Mohiuddine, S. A.; Alotaibi, A. Coupled coincidence point theorems for compatible mappings in partially ordered intuitionistic generalized fuzzy metric spaces, Fixed Point Theory Appl., Volume 2013 (2013), pp. 1-18 | DOI | Zbl

[31] Mursaleen, M.; Edely, O. H. H. Statistical convergence of double sequences, J. Math. Anal. Appl., Volume 288 (2003), pp. 223-231 | DOI

[32] Mustafa, Z.; Sims, B. Some remarks concerning D-metric spaces, In: International Conference on Fixed Point Theory and Applications, Yokohama Publ., Yokohama (2004), pp. 189-198 | Zbl

[33] Mustafa, Z.; Sims, B. A new approach to generalized metric spaces, J. Nonlinear Convex Anal., Volume 7 (2006), pp. 289-297

[34] Park, J. H. Intuitionistic fuzzy metric spaces, Chaos Solitons Fractals, Volume 22 (2004), pp. 1039-1046 | DOI

[35] Patterson, R. F.; Savas, E. Lacunary statistical convergence of double sequences, Math. Commun., Volume 10 (2005), pp. 55-61 | Zbl

[36] Samarandache, F. Neutrosophic set—a generalization of the intuitionistic fuzzy set, Int. J. Pure Appl. Math., Volume 24 (2005), pp. 287-297 | Zbl

[37] Schweizer, B.; Sklar, A. Statistical metric spaces, Pacific J. Math., Volume 10 (1960), pp. 313-334 | Zbl

[38] Sun, G.; Yang, K. Generalized fuzzy metric spaces with properties, Res. J. Appl. Sci. Eng. Technol., Volume 2 (2010), pp. 673-678

[39] Tripathy, B. C.; Baruah, A. Lacunary statically convergent and lacunary strongly convergent generalized difference sequences of fuzzy real numbers, Kyungpook Math. J., Volume 50 (2010), pp. 565-574 | Zbl | DOI

[40] Tripathy, B. C.; Dutta, A. J. Lacunary bounded variation sequence of fuzzy real numbers, J. Intell. Fuzzy Syst., Volume 24 (2013), pp. 185-189 | DOI | Zbl

[41] Kandasamy, W. B. Vasantha; Samarandache, F. Neutrosophic rings, Hexis, Phoenix, AZ, 2006 | Zbl

[42] Zadeh, L. A. Fuzzy sets, Inf. Control, Volume 18 (1965), pp. 338-353 | Zbl

[43] Zhou, C.; Wang, S.; iric´, L. C´; Alsulami, S. M. Generalized probabilistic metric spaces and fixed point theorem, Fixed Point Theory Appl., Volume 2014 (2014), pp. 1-15 | DOI | Zbl

Cité par Sources :