Voir la notice de l'article provenant de la source International Scientific Research Publications
Upadhyay, B. B. 1 ; Singh, S. K.  1 ; Stancu-Minasian, I. M.  2
@article{JNSA_2024_17_3_a2, author = {Upadhyay, B. B. and Singh, S. K. and Stancu-Minasian, I. M. }, title = {Duality for non-smooth semidefinite multiobjective programming problems with equilibrium constraints using convexificators}, journal = {Journal of nonlinear sciences and its applications}, pages = {128-149}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2024}, doi = {10.22436/jnsa.017.03.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.03.03/} }
TY - JOUR AU - Upadhyay, B. B. AU - Singh, S. K. AU - Stancu-Minasian, I. M. TI - Duality for non-smooth semidefinite multiobjective programming problems with equilibrium constraints using convexificators JO - Journal of nonlinear sciences and its applications PY - 2024 SP - 128 EP - 149 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.03.03/ DO - 10.22436/jnsa.017.03.03 LA - en ID - JNSA_2024_17_3_a2 ER -
%0 Journal Article %A Upadhyay, B. B. %A Singh, S. K. %A Stancu-Minasian, I. M. %T Duality for non-smooth semidefinite multiobjective programming problems with equilibrium constraints using convexificators %J Journal of nonlinear sciences and its applications %D 2024 %P 128-149 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.03.03/ %R 10.22436/jnsa.017.03.03 %G en %F JNSA_2024_17_3_a2
Upadhyay, B. B.; Singh, S. K. ; Stancu-Minasian, I. M. . Duality for non-smooth semidefinite multiobjective programming problems with equilibrium constraints using convexificators. Journal of nonlinear sciences and its applications, Tome 17 (2024) no. 3, p. 128-149. doi : 10.22436/jnsa.017.03.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.03.03/
[1] Semidefinite programming solution of economic dispatch problem with non-smooth, non-convex cost functions, Electric Power Syst. Res., Volume 164 (2018), pp. 178-187 | DOI
[2] First order duality for a new class of nonconvex semi-infinite minimax fractional programming problems, J. Adv. Math. Stud., Volume 9 (2016), pp. 132-162 | Zbl
[3] Optimality conditions for non-smooth mathematical programs with equilibrium constraints, using convexificators, Optimization, Volume 65 (2016), pp. 67-85 | Zbl | DOI
[4] Some Pareto optimality results for non-smooth multiobjective optimization problems with equilibrium constraints, Int. J. Nonlinear Anal. Appl., Volume 13 (2022), pp. 2185-2196 | DOI
[5] Linear Matrix Inequalities in System and Control Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1994 | DOI
[6] Multiobjective Optimization: Interactive and Evolutionary Approaches, Springer, Berlin, 2008 | Zbl
[7] Modeling water allocating institutions based on multiple optimization problems with equilibrium constraints, Environ. Model. Softw., Volume 46 (2013), pp. 196-207 | DOI
[8] A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations, Math. Program., Volume 113 (2008), pp. 259-282 | Zbl | DOI
[9] Optimization and non-smooth analysis, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990 | DOI
[10] Convexification and concavification of positively homogeneous functions by the same family of linear functions, Technical Report, University of Pisa, Italy (1994), pp. 1-11
[11] Hunting for a smaller convex subdifferential, J. Global Optim., Volume 10 (1997), pp. 305-326 | Zbl | DOI
[12] Convexifactors, generalized convexity, and optimality conditions, J. Optim. Theory Appl., Volume 113 (2002), pp. 41-64 | Zbl | DOI
[13] Convexifactors, generalized convexity and vector optimization, Optimization, Volume 53 (2004), pp. 77-94 | Zbl | DOI
[14] Abadie-type constraint qualification for mathematical programs with equilibrium constraints, J. Optim. Theory Appl., Volume 124 (2005), pp. 595-614 | DOI | Zbl
[15] On the Guignard constraint qualification for mathematical programs with equilibrium constraints, Optimization, Volume 54 (2005), pp. 517-534 | Zbl | DOI
[16] Optimality conditions for nonconvex semidefinite programming, Math. Program., Volume 88 (2000), pp. 105-128 | DOI | Zbl
[17] Some feasibility issues in mathematical programs with equilibrium constraints, SIAM J. Optim.,, Volume 18 (1998), pp. 673-681 | Zbl | DOI
[18] Pareto efficiency criteria and duality for multiobjective fractional programming problems with equilibrium constraints on Hadamard manifolds, Mathematics, Volume 11 (2023), pp. 1-28 | DOI
[19] Constraint qualifications for multiobjective programming problems on Hadamard manifolds, Aust. J. Math. Anal. Appl., Volume 20 (2023), pp. 1-17 | Zbl
[20] Economic dispatch of energy storage systems in DC microgrids employing a semidefinite programming model, J. Energy Storage, Volume 21 (2019), pp. 1-8 | DOI
[21] Semidefinite programming in combinatorial optimization, Math. Program., Volume 79 (1997), pp. 143-161 | DOI
[22] Optimality conditions for non-smooth semidefinite programming via convexificators, Positivity, Volume 19 (2019), pp. 221-236 | Zbl | DOI
[23] Wolfe-type duality for mathematical programs with equilibrium constraints, Acta Math. Appl. Sin. Engl. Ser., Volume 35 (2019), pp. 532-540 | Zbl | DOI
[24] Existence of optimal solutions to mathematical programs with equilibrium constraints, Oper. Res. Lett., Volume 7 (1988), pp. 61-64 | DOI | Zbl
[25] Approximate subdifferentials and applications. II, Mathematika, Volume 33 (1986), pp. 111-128 | DOI | Zbl
[26] Non-smooth calculus, minimality, and monotonicity of convexificators, J. Optim. Theory Appl., Volume 10 (1999), pp. 599-621 | DOI | Zbl
[27] On non-smooth mathematical programs with equilibrium constraints using generalized convexity, Yugosl. J. Oper. Res., Volume 29 (2019), pp. 449-463 | Zbl | DOI
[28] Optimality conditions for mathematical programs with equilibrium constraints using directional convexificators, Optimization, Volume 72 (2023), pp. 1363-1383 | DOI | Zbl
[29] Semidefinite multiobjective mathematical programming problems with vanishing constraints using convexificators, Fractal Fract., Volume 6 (2022), pp. 1-19 | DOI
[30] Eigenvalue optimization, Cambridge Univ. Press, Cambridge, Volume 5 (1996), pp. 149-190 | DOI
[31] Mathematical Programs With Equilibrium Constraints, Cambridge University Press, Cambridge, 1996
[32] Convexificators and necessary conditions for efficiency, Optimization, Volume 63 (2014), pp. 321-335 | DOI | Zbl
[33] Necessary and sufficient conditions for efficiency via convexificators, J. Optim. Theory Appl., Volume 160 (2014), pp. 510-526 | Zbl | DOI
[34] Nonlinear Programming, McGraw-Hill, New York, 1969
[35] A generalized derivative for calm and stable functions, Differ. Integral Equ., Volume 5 (1992), pp. 433-454 | Zbl
[36] Kluwer Academic Publishers, Boston, MA, 1999
[37] Optimality and duality for semidefinite multiobjective programming problems using convexificators, J. Appl. Numer. Optim., Volume 4 (2022), pp. 103-118 | DOI
[38] Efficiency and duality in non-smooth multiobjective fractional programming involving -pseudolinear functions, Yugosl. J. Oper. Res., Volume 22 (2012), pp. 3-18 | DOI
[39] Generallized Concavity and Duality, in Generalized concavity in optimization and economics, Academic Press, New York, 1981
[40] On nonconvex subdifferential calculus in Banach spaces, J. Convex Anal., Volume 2 (1995), pp. 211-227 | Zbl
[41] Optimality conditions for a class of mathematical programs with equilibrium constraints, Math. Oper. Res., Volume 24 (1999), pp. 627-644 | DOI | Zbl
[42] Duality for non-smooth optimization problems with equilibrium constraints, using convexificators, J. Optim. Theory Appl., Volume 171 (2016), pp. 694-707 | Zbl | DOI
[43] Approximating K-means-type clustering via semidefinite programming, SIAM J. Optim., Volume 18 (2007), pp. 186-205 | Zbl | DOI
[44] Mathematical programs with equilibrium constraints (mpecs) in process engineering, Comput. Chem. Eng., Volume 27 (2003), pp. 1381-1392 | DOI
[45] Mathematical programs with complementarity constraints in traffic and telecommunications networks, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 336 (2008), pp. 1973-1987 | DOI | Zbl
[46] Constraint qualifications in terms of convexificators for non-smooth programming problems with mixed constraints, Optimization, Volume 72 (2023), pp. 2019-2038 | Zbl | DOI
[47] Validating numerical semidefinite programming solvers for polynomial invariants, Form. Methods Syst. Des., Volume 53 (2018), pp. 286-312 | Zbl | DOI
[48] Duality results in terms of convexifactors for a bilevel multiobjective problem, Filomat, Volume 38 (2024), pp. 2015-2022
[49] Mathematical programs with complementarity constraints: Stationarity, optimality, and sensitivity, Math. Oper. Res., Volume 25 (2000), pp. 1-22 | DOI | Zbl
[50] First and second order analysis of nonlinear semidefinite programs, Math. Program., Volume 77 (1997), pp. 301-320 | DOI | Zbl
[51] Duality in multiobjective mathematical programs with equilibrium constraints, Int. J. Appl. Comput. Math., Volume 7 (2021), pp. 1-15 | DOI | Zbl
[52] On methods for solving nonlinear semidefinite optimization problems, Numer. Algebra Control Optim., Volume 1 (2011), pp. 1-14 | DOI | Zbl
[53] The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming, Math. Program., Volume 114 (2008), pp. 349-391 | DOI | Zbl
[54] Optimality conditions for multiobjective mathematical programming problems with equilibrium constraints on Hadamard manifolds, Mathematics, Volume 10 (2022), pp. 1-20 | DOI
[55] The linear nonconvex generalized gradient and Lagrange multipliers, SIAM J. Optim., Volume 5 (1995), pp. 670-680 | Zbl | DOI
[56] Duality for multiobjective programming problems with equilibrium constraints on Hadamard manifolds under generalized geodesic convexity, WSEAS Trans. Math., Volume 22 (2023), pp. 259-270
[57] Non-smooth semi-infinite minmax programming involving generalized ( , )-invexity, J. Syst. Sci. Complex., Volume 28 (2015), pp. 857-875 | DOI
[58] On interval-valued multiobjective programming problems and vector variational-like inequalities using limiting subdifferential, In: S. Patnaik, K. Tajeddini and V. Jain, (eds), Computational Management. Modeling and Optimization in Science and Technologies, Springer, Cham (2021), pp. 325-343 | DOI
[59] On the applications of non-smooth vector optimization problems to solve generalized vector variational inequalities using convexificators, In: Adv. Intell. Syst. Comput., Springer, Cham, Switzerland, 2019 | Zbl | DOI
[60] Sufficient optimality conditions and duality for mathematical programming problems with equilibrium constraints, Comm. Appl. Nonlinear Anal., Volume 25 (2018), pp. 68-84
[61] Optimality and duality for non-smooth semidefinite multiobjective fractional programming problems using convexificators, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., Volume 85 (2023), pp. 79-90
[62] Constraint qualifications and optimality conditions for nonsmooth semidefinite multiobjective programming problems with equilibrium constraints using convexificators, submitted in RAIRO Oper. Res. (2023)
[63] On relations between non-smooth interval-valued multiobjective programming problems and generalized Stampacchia vector variational inequalities, Optimization, Volume 72 (2023), pp. 2635-2659 | Zbl | DOI
[64] On Minty variational principle for non-smooth multiobjective optimization problems on Hadamard manifolds, Optimization, Volume 72 (2023), pp. 3081-3100 | DOI | Zbl
[65] Applications of semidefinite programming, Appl. Numer. Math., Volume 29 (1999), pp. 283-299 | DOI
[66] Generalized Gauss inequalities via semidefinite programming, Math. Program., Volume 156 (2016), pp. 271-302 | Zbl | DOI
[67] A duality theorem for nonlinear programming, Q. Appl. Math., Volume 19 (1961), pp. 239-244
[68] A survey of numerical methods for nonlinear semidefinite programming, J. Oper. Res. Soc. Japan, Volume 58 (2015), pp. 24-60 | Zbl | DOI
[69] Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints, J. Math. Anal. Appl., Volume 37 (2005), pp. 350-369 | Zbl | DOI
[70] Optimality of approximate quasi-weakly efficient solutions for vector equilibrium problems via convexificators, Asia-Pac. J. Oper. Res., Volume 39 (2022), pp. 1-16 | Zbl | DOI
Cité par Sources :