Equivalence between best proximity point and fixed point for some class of multi-valued mappings
Journal of nonlinear sciences and its applications, Tome 17 (2024) no. 3, p. 123-127.

Voir la notice de l'article provenant de la source International Scientific Research Publications

‎In the year 2016‎, ‎Pragadeeswarar et al‎. ‎[V‎. ‎Pragadeeswarar‎, ‎M‎. ‎Marudai‎, ‎P‎. ‎Kumam‎, ‎J‎. ‎Nonlinear Sci‎. ‎Appl.‎, ‎${\bf 9}$ (2016)‎, ‎1911--1921] considered a special class of multi-valued mappings and investigated the existence of best proximity points for such class of mappings which generalizes the fixed point result established by Choudhury et al‎. ‎[B‎. ‎S‎. ‎Choudhury‎, ‎N‎. ‎Metiya‎, ‎Arab J‎. ‎Math‎. ‎Sci.‎, $‎{\bf 17}$ (2011)‎, ‎135--151] in the context of partially ordered metric spaces‎. ‎In this note‎, ‎we have showed that the best proximity point result is a direct consequence of the corresponding fixed point result‎. ‎In the last part of this note‎, ‎we applied our result in [V‎. ‎Pragadeeswarar‎, ‎M‎. ‎Marudai‎, ‎P‎. ‎Kumam‎, ‎J‎. ‎Nonlinear Sci‎. ‎Appl.‎, ‎${\bf 9}$ (2016)‎, ‎1911--1921‎, ‎Example 2.2] to validate our claim‎.
DOI : 10.22436/jnsa.017.03.02
Classification : 47H10, 54H25
Keywords: Best proximity point, multi-valued mapping, partially ordered metric space, fixed point‎

Mandal, M. 1 ; Som, S. 2

1 Department of Mathematics‎, ‎School of Basic and Applied Sciences, ‎Adamas University, ‎Barasat-700126, India
2 Department of Mathematics‎, ‎School of Basic and Applied Sciences, ‎Adamas University, ‎Barasat-700126, India;Mathematics Division‎, ‎School of Advanced Sciences and Languages, ‎VIT Bhopal University, ‎Madhya Pradesh-466114, India
@article{JNSA_2024_17_3_a1,
     author = {Mandal, M. and Som, S.},
     title = {Equivalence between best proximity point and fixed point for some class of multi-valued mappings},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {123-127},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2024},
     doi = {10.22436/jnsa.017.03.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.03.02/}
}
TY  - JOUR
AU  - Mandal, M.
AU  - Som, S.
TI  - Equivalence between best proximity point and fixed point for some class of multi-valued mappings
JO  - Journal of nonlinear sciences and its applications
PY  - 2024
SP  - 123
EP  - 127
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.03.02/
DO  - 10.22436/jnsa.017.03.02
LA  - en
ID  - JNSA_2024_17_3_a1
ER  - 
%0 Journal Article
%A Mandal, M.
%A Som, S.
%T Equivalence between best proximity point and fixed point for some class of multi-valued mappings
%J Journal of nonlinear sciences and its applications
%D 2024
%P 123-127
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.03.02/
%R 10.22436/jnsa.017.03.02
%G en
%F JNSA_2024_17_3_a1
Mandal, M.; Som, S. Equivalence between best proximity point and fixed point for some class of multi-valued mappings. Journal of nonlinear sciences and its applications, Tome 17 (2024) no. 3, p. 123-127. doi : 10.22436/jnsa.017.03.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.03.02/

[1] Banach, S. Sur les op´erations dans les ensembles abstraits et leur application aux ´equations int´egrales, Fund. Math., Volume 3 (1922), pp. 133-181 | DOI

[2] Choudhury, B. S.; Metiya, N. Multivalued and singlevalued fixed point results in partially ordered metric spaces, Arab J. Math. Sci., Volume 17 (2011), pp. 135-151 | Zbl | DOI

[3] Jain, S. K.; Meena, G.; Singh, D.; Maitra, J. K. Best proximity point results with their consequences and applications, J. Inequal. Appl., Volume 2022 (2022), pp. 1-16 | Zbl | DOI

[4] Pragadeeswarar, V.; Marudai, M.; Kumam, P. Best proximity point theorems for multivalued mappings on partially ordered metric spaces, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 1911-1921

[5] Som, S.; Gabeleh, M. Comments on the paper “Best proximity point results with their consequences and applications”, J. Inequal. Appl., Volume 2022 (2022), pp. 1-9 | DOI | Zbl

Cité par Sources :