Voir la notice de l'article provenant de la source International Scientific Research Publications
Mandal, M. 1 ; Som, S. 2
@article{JNSA_2024_17_3_a1, author = {Mandal, M. and Som, S.}, title = {Equivalence between best proximity point and fixed point for some class of multi-valued mappings}, journal = {Journal of nonlinear sciences and its applications}, pages = {123-127}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2024}, doi = {10.22436/jnsa.017.03.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.03.02/} }
TY - JOUR AU - Mandal, M. AU - Som, S. TI - Equivalence between best proximity point and fixed point for some class of multi-valued mappings JO - Journal of nonlinear sciences and its applications PY - 2024 SP - 123 EP - 127 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.03.02/ DO - 10.22436/jnsa.017.03.02 LA - en ID - JNSA_2024_17_3_a1 ER -
%0 Journal Article %A Mandal, M. %A Som, S. %T Equivalence between best proximity point and fixed point for some class of multi-valued mappings %J Journal of nonlinear sciences and its applications %D 2024 %P 123-127 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.03.02/ %R 10.22436/jnsa.017.03.02 %G en %F JNSA_2024_17_3_a1
Mandal, M.; Som, S. Equivalence between best proximity point and fixed point for some class of multi-valued mappings. Journal of nonlinear sciences and its applications, Tome 17 (2024) no. 3, p. 123-127. doi : 10.22436/jnsa.017.03.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.03.02/
[1] Sur les op´erations dans les ensembles abstraits et leur application aux ´equations int´egrales, Fund. Math., Volume 3 (1922), pp. 133-181 | DOI
[2] Multivalued and singlevalued fixed point results in partially ordered metric spaces, Arab J. Math. Sci., Volume 17 (2011), pp. 135-151 | Zbl | DOI
[3] Best proximity point results with their consequences and applications, J. Inequal. Appl., Volume 2022 (2022), pp. 1-16 | Zbl | DOI
[4] Best proximity point theorems for multivalued mappings on partially ordered metric spaces, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 1911-1921
[5] Comments on the paper “Best proximity point results with their consequences and applications”, J. Inequal. Appl., Volume 2022 (2022), pp. 1-9 | DOI | Zbl
Cité par Sources :