Voir la notice de l'article provenant de la source International Scientific Research Publications
Mısır, A. 1 ; Cengizhan, E. 2 ; Başcı, Y. 3
@article{JNSA_2024_17_2_a2, author = {M{\i}s{\i}r, A. and Cengizhan, E. and Ba\c{s}c{\i}, Y.}, title = {Ulam type stability of \(\psi {\)-Riemann-Liouville} fractional differential equations using \(\left( k,\psi \right) \)-generalized {Laplace} transform}, journal = {Journal of nonlinear sciences and its applications}, pages = {100-114}, publisher = {mathdoc}, volume = {17}, number = {2}, year = {2024}, doi = {10.22436/jnsa.017.02.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.02.03/} }
TY - JOUR AU - Mısır, A. AU - Cengizhan, E. AU - Başcı, Y. TI - Ulam type stability of \(\psi \)-Riemann-Liouville fractional differential equations using \(\left( k,\psi \right) \)-generalized Laplace transform JO - Journal of nonlinear sciences and its applications PY - 2024 SP - 100 EP - 114 VL - 17 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.02.03/ DO - 10.22436/jnsa.017.02.03 LA - en ID - JNSA_2024_17_2_a2 ER -
%0 Journal Article %A Mısır, A. %A Cengizhan, E. %A Başcı, Y. %T Ulam type stability of \(\psi \)-Riemann-Liouville fractional differential equations using \(\left( k,\psi \right) \)-generalized Laplace transform %J Journal of nonlinear sciences and its applications %D 2024 %P 100-114 %V 17 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.02.03/ %R 10.22436/jnsa.017.02.03 %G en %F JNSA_2024_17_2_a2
Mısır, A.; Cengizhan, E.; Başcı, Y. Ulam type stability of \(\psi \)-Riemann-Liouville fractional differential equations using \(\left( k,\psi \right) \)-generalized Laplace transform. Journal of nonlinear sciences and its applications, Tome 17 (2024) no. 2, p. 100-114. doi : 10.22436/jnsa.017.02.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.02.03/
[1] A Generalized definition of the fractional derivative with applications, Math. Probl. Eng., Volume 2021 (2021), pp. 1-9 | Zbl | DOI
[2] Fractional economic models based on market equilibrium in the frame of different type kernels, Chaos Solitons Fractals, Volume 130 (2020), pp. 1-9 | DOI
[3] Electrical circuits RC, LC, and RLC under generalized type non-local singular fractional operator, Fractal Fract., Volume 5 (2021), pp. 1-18 | DOI
[4] Some new inequalities for (k, s)-fractional integrals, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 5374-5381 | DOI
[5] Laplace transform and generalized Hyers-Ulam stability of linear differential equations, Electron. J. Differ. Equ., Volume 2014 (2014), pp. 1-11 | Zbl
[6] Fractional calculus with applications in mechanics, ISTE, London; John Wiley & Sons, Inc., Hoboken, NJ, 2014
[7] On the stability problem of differential equations in the sense of Ulam, Results Math., Volume 75 (2020), pp. 1-13 | DOI | Zbl
[8] Generalized derivatives and Laplace transform in (k, )-Hilfer form, Math. Methods Appl. Sci., Volume 46 (2023), pp. 10400-10420 | DOI | Zbl
[9] Fractional viscoelastic models for power-law materials, Soft Matter, Volume 16 (2020), pp. 6002-6020 | DOI
[10] A Review of definitions for fractional derivatives and integral, Math. Probl. Eng., Volume 2014 (2014), pp. 1-6 | Zbl | DOI
[11] Tempered and Hadamard-type fractional calculus with respect to functions, Mediterr. J. Math., Volume 18 (2021), pp. 1-28 | DOI | Zbl
[12] On Laplace transforms with respect to functions and their applications to fractional differential equations, Math. Methods Appl. Sci., Volume 2021 (2021), pp. 1-20 | DOI | Zbl
[13] Applications of fractional calculus in physics, World Scientific Publishing Co., River Edge, NJ, 2000 | DOI
[14] The role of fractional calculus in modeling biological phenomena: a review, Commun. Nonlinear Sci. Numer. Simul., Volume 51 (2017), pp. 141-159 | Zbl | DOI
[15] On Hadamard k-fractional integrals, J. Fract. Calc. Appl., Volume 9 (2018), pp. 255-267
[16] A modified Laplace transform for certain generalized fractional operators, Results Nonlinear Anal., Volume 1 (2018), pp. 88-98
[17] Generalized fractional derivatives and Laplace transform, Discrete Contin. Dyn. Syst. Ser. S, Volume 13 (2020), pp. 709-722 | DOI | Zbl
[18] On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 2607-2619 | Zbl | DOI
[19] Mittag-Leffler-Hyers-Ulam stability of fractional differential equations of second order, J. Math. Ext., Volume 13 (2019), pp. 29-43 | Zbl
[20] New approach to a generalized fractional integral, Appl. Math. Comput., Volume 218 (2011), pp. 860-865 | Zbl | DOI
[21] A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., Volume 6 (2014), pp. 1-15 | Zbl
[22] Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam, 2006
[23] Letter from Hanover, Germany to G.F.A. L’Hospital, September 30, 1695, Leibniz Mathematische Schriften, Olms-Verlag, Hildesheim: Germany, Volume 30 (1962, First published in 1849), pp. 301-302
[24] Hyers–Ulam stability and existence of solutions for differential equations with Caputo–Fabrizio fractional derivative, Mathematics, Volume 7 (2019), pp. 1-14 | DOI
[25] Hyers–Ulam stability and existence of solutions to the generalized Liouville-Caputo fractional differential equations, Symmetry, Volume 12 (2020), pp. 1-18 | DOI
[26] On the Generalized (k, )-fractional derivative, Prog. Fract. Differ. Appl., Volume 4 (2018), pp. 133-145
[27] k-Hilfer-Prabhakar fractional derivatives and its applications, Indian J. Math., Volume 59 (2017), pp. 367-383 | DOI | Zbl
[28] Fractional differential equations, Academic Press, San Diego, CA, 1999
[29] On generalized k-fractional derivative operator, AIMS Math., Volume 5 (2020), pp. 1936-1945 | DOI
[30] Laplace transform and Hyers-Ulam stability of linear differential equations, J. Math. Anal. Appl., Volume 403 (2013), pp. 244-251 | Zbl | DOI
[31] On the k-Riemann-Liouville fractional derivative, Int. J. Contemp. Math. Sci., Volume 8 (2013), pp. 41-51 | DOI | Zbl
[32] Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon, 1993
[33] Laplace transform method for the Ulam stability of linear fractional differential equations with constant coefficients, Mediterr. J. Math., Volume 14 (2017), pp. 1-17 | DOI
[34] Applications of fractional calculus to epidemiological models, AIP Conf. Proc., Volume 1479 (2012), pp. 1339-1342 | DOI
[35] A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., Volume 64 (2018), pp. 213-231 | DOI | Zbl
[36] Review of some promising fractional physical models, Int. J. Mod. Phys. B, Volume 27 (2013), pp. 1-32 | Zbl | DOI
[37] Mathematical economics: Application of fractional calculus, Mathematics, Volume 8 (2020), pp. 1-3 | DOI
[38] On the -Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., Volume 60 (2018), pp. 72-91 | DOI
[39] Hyers-Ulam stability of fractional linear differential equations involving Caputo fractional derivatives, Appl. Math., Volume 60 (2015), pp. 383-393 | DOI | Zbl
[40] Hyers-Ulam stability of a class of fractional linear differential equations, Kodai Math. J., Volume 38 (2015), pp. 510-520 | Zbl | DOI
[41] Analysis of solutions of the integro-differential equations with generalized Liouville- Caputo fractional derivative by -Laplace transform, Int. J. Appl. Comput. Math., Volume 8 (2022), pp. 1-19 | DOI | Zbl
Cité par Sources :