Ulam type stability of $\psi $-Riemann-Liouville fractional differential equations using $\left( k,\psi \right) $-generalized Laplace transform
Journal of nonlinear sciences and its applications, Tome 17 (2024) no. 2, p. 100-114.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The primary objective of this paper is to explore the Hyers-Ulam stability of the $\psi $-Riemann-Liouville fractional differential equations by employing the $(k,\psi )$-generalized Laplace transform method. The outcomes of our investigation represent advancements over certain existing results in the literature. Furthermore, we present illustrative examples to elucidate our primary findings.
DOI : 10.22436/jnsa.017.02.03
Classification : 34K20, 26D10, 44A10, 26A33, 33B15
Keywords: Hyers-Ulam stability, Riemann-Liouville fractional derivative, linear differential equation, \(\left( k,\psi \right) \)-generalized Laplace transform

Mısır, A. 1 ; Cengizhan, E. 2 ; Başcı, Y. 3

1 Department of Mathematics, Faculty of Sciences, Gazi University, Ankara, Turkey
2 Department of Mathematics, Graduate School of Natural and Applied Sciences, Gazi University, Ankara, Turkey
3 Department of Mathematics, Faculty of Art and Sciences, Bolu Abant Izzet Baysal University, Bolu, Turkey
@article{JNSA_2024_17_2_a2,
     author = {M{\i}s{\i}r, A. and Cengizhan, E. and Ba\c{s}c{\i}, Y.},
     title = {Ulam type stability of \(\psi {\)-Riemann-Liouville} 	fractional differential equations using \(\left( k,\psi \right) \)-generalized {Laplace} transform},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {100-114},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2024},
     doi = {10.22436/jnsa.017.02.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.02.03/}
}
TY  - JOUR
AU  - Mısır, A.
AU  - Cengizhan, E.
AU  - Başcı, Y.
TI  - Ulam type stability of \(\psi \)-Riemann-Liouville 	fractional differential equations using \(\left( k,\psi \right) \)-generalized Laplace transform
JO  - Journal of nonlinear sciences and its applications
PY  - 2024
SP  - 100
EP  - 114
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.02.03/
DO  - 10.22436/jnsa.017.02.03
LA  - en
ID  - JNSA_2024_17_2_a2
ER  - 
%0 Journal Article
%A Mısır, A.
%A Cengizhan, E.
%A Başcı, Y.
%T Ulam type stability of \(\psi \)-Riemann-Liouville 	fractional differential equations using \(\left( k,\psi \right) \)-generalized Laplace transform
%J Journal of nonlinear sciences and its applications
%D 2024
%P 100-114
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.02.03/
%R 10.22436/jnsa.017.02.03
%G en
%F JNSA_2024_17_2_a2
Mısır, A.; Cengizhan, E.; Başcı, Y. Ulam type stability of \(\psi \)-Riemann-Liouville 	fractional differential equations using \(\left( k,\psi \right) \)-generalized Laplace transform. Journal of nonlinear sciences and its applications, Tome 17 (2024) no. 2, p. 100-114. doi : 10.22436/jnsa.017.02.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.02.03/

[1] Abu-Shady, M.; Kaabar, M. K. A. A Generalized definition of the fractional derivative with applications, Math. Probl. Eng., Volume 2021 (2021), pp. 1-9 | Zbl | DOI

[2] Acay, B.; Bas, E.; Abdeljawad, T. Fractional economic models based on market equilibrium in the frame of different type kernels, Chaos Solitons Fractals, Volume 130 (2020), pp. 1-9 | DOI

[3] Acay, B.; Inc, M. Electrical circuits RC, LC, and RLC under generalized type non-local singular fractional operator, Fractal Fract., Volume 5 (2021), pp. 1-18 | DOI

[4] Aldhaifallah, M.; Tomar, M.; Nisar, K. S.; Purohit, S. D. Some new inequalities for (k, s)-fractional integrals, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 5374-5381 | DOI

[5] Alqifiary, Q. H.; Jung, S.-M. Laplace transform and generalized Hyers-Ulam stability of linear differential equations, Electron. J. Differ. Equ., Volume 2014 (2014), pp. 1-11 | Zbl

[6] Atanackovi´c, T. M.; Pilipovi´c, S.; Stankovi´c, B.; Zorica, D. Fractional calculus with applications in mechanics, ISTE, London; John Wiley & Sons, Inc., Hoboken, NJ, 2014

[7] Bas¸cı, Y.; Mısır, A.; ˘grekc¸i, S. ¨O On the stability problem of differential equations in the sense of Ulam, Results Math., Volume 75 (2020), pp. 1-13 | DOI | Zbl

[8] Bas¸cı, Y.; Mısır, A.; ˘grekc¸i, S. ¨O Generalized derivatives and Laplace transform in (k, )-Hilfer form, Math. Methods Appl. Sci., Volume 46 (2023), pp. 10400-10420 | DOI | Zbl

[9] Bonfanti, A.; Kaplan, J. L.; Charras, G.; Kabla, A. Fractional viscoelastic models for power-law materials, Soft Matter, Volume 16 (2020), pp. 6002-6020 | DOI

[10] Oliveira, E. C. de; Machado, J. A. Tenreiro A Review of definitions for fractional derivatives and integral, Math. Probl. Eng., Volume 2014 (2014), pp. 1-6 | Zbl | DOI

[11] Fahad, H. M.; Fernandez, A.; Rehman, M. Ur; Siddiqi, M. Tempered and Hadamard-type fractional calculus with respect to functions, Mediterr. J. Math., Volume 18 (2021), pp. 1-28 | DOI | Zbl

[12] Fahad, H. M.; Rehman, M. Ur; Fernandez, A. On Laplace transforms with respect to functions and their applications to fractional differential equations, Math. Methods Appl. Sci., Volume 2021 (2021), pp. 1-20 | DOI | Zbl

[13] Hilfer, R. Applications of fractional calculus in physics, World Scientific Publishing Co., River Edge, NJ, 2000 | DOI

[14] Ionescu, C.; Lopes, A.; Copota, D.; Machado, J. A. T.; Bates, J. H. T. The role of fractional calculus in modeling biological phenomena: a review, Commun. Nonlinear Sci. Numer. Simul., Volume 51 (2017), pp. 141-159 | Zbl | DOI

[15] Iqbal, S.; Mubeen, S.; Tomar, M. On Hadamard k-fractional integrals, J. Fract. Calc. Appl., Volume 9 (2018), pp. 255-267

[16] Jarad, F.; Abdeljawad, T. A modified Laplace transform for certain generalized fractional operators, Results Nonlinear Anal., Volume 1 (2018), pp. 88-98

[17] Jarad, F.; Abdeljawad, T. Generalized fractional derivatives and Laplace transform, Discrete Contin. Dyn. Syst. Ser. S, Volume 13 (2020), pp. 709-722 | DOI | Zbl

[18] Jarad, F.; Abdeljawad, T.; Beleanu, D. On the generalized fractional derivatives and their Caputo modification, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 2607-2619 | Zbl | DOI

[19] Kalvandi, V.; Eghbali, N.; Rassias, J. M. Mittag-Leffler-Hyers-Ulam stability of fractional differential equations of second order, J. Math. Ext., Volume 13 (2019), pp. 29-43 | Zbl

[20] Katugampola, U. N. New approach to a generalized fractional integral, Appl. Math. Comput., Volume 218 (2011), pp. 860-865 | Zbl | DOI

[21] Katugampola, U. N. A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., Volume 6 (2014), pp. 1-15 | Zbl

[22] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. Theory and applications of fractional differential equations, Elsevier Science B.V., Amsterdam, 2006

[23] Leibniz, G. W. Letter from Hanover, Germany to G.F.A. L’Hospital, September 30, 1695, Leibniz Mathematische Schriften, Olms-Verlag, Hildesheim: Germany, Volume 30 (1962, First published in 1849), pp. 301-302

[24] Liu, K.; Fe˘ckan, M.; O’Regan, D.; Wang, J. Hyers–Ulam stability and existence of solutions for differential equations with Caputo–Fabrizio fractional derivative, Mathematics, Volume 7 (2019), pp. 1-14 | DOI

[25] Liu, K.; Fe˘ckan, M.; Wang, J. Hyers–Ulam stability and existence of solutions to the generalized Liouville-Caputo fractional differential equations, Symmetry, Volume 12 (2020), pp. 1-18 | DOI

[26] Oliveira, D. S.; Oliveira, E. C. de On the Generalized (k, )-fractional derivative, Prog. Fract. Differ. Appl., Volume 4 (2018), pp. 133-145

[27] Panchal, S. K.; Dole, P. V.; Khandagale, A. D. k-Hilfer-Prabhakar fractional derivatives and its applications, Indian J. Math., Volume 59 (2017), pp. 367-383 | DOI | Zbl

[28] Podlubny, I. Fractional differential equations, Academic Press, San Diego, CA, 1999

[29] Rahman, G.; Mubeen, S.; Nisar, K. S. On generalized k-fractional derivative operator, AIMS Math., Volume 5 (2020), pp. 1936-1945 | DOI

[30] Rezaei, H.; Jung, S.-M.; Rassias, T. M. Laplace transform and Hyers-Ulam stability of linear differential equations, J. Math. Anal. Appl., Volume 403 (2013), pp. 244-251 | Zbl | DOI

[31] Romero, L. G.; Luque, L. L.; Dorrego, G. A.; Cerutti, R. A. On the k-Riemann-Liouville fractional derivative, Int. J. Contemp. Math. Sci., Volume 8 (2013), pp. 41-51 | DOI | Zbl

[32] Samko, S. G.; Kilbas, A. A.; Marichev, O. I. Fractional integrals and derivatives, Gordon and Breach Science Publishers, Yverdon, 1993

[33] Shen, Y.; Chen, W. Laplace transform method for the Ulam stability of linear fractional differential equations with constant coefficients, Mediterr. J. Math., Volume 14 (2017), pp. 1-17 | DOI

[34] Skwara, U.; Martins, J.; Ghaffari, P.; Aguiar, M.; Boto, J.; Stollenwerk, N. Applications of fractional calculus to epidemiological models, AIP Conf. Proc., Volume 1479 (2012), pp. 1339-1342 | DOI

[35] Sun, H. G.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y. Q. A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., Volume 64 (2018), pp. 213-231 | DOI | Zbl

[36] Tarasov, V. E. Review of some promising fractional physical models, Int. J. Mod. Phys. B, Volume 27 (2013), pp. 1-32 | Zbl | DOI

[37] Tarasov, V. E. Mathematical economics: Application of fractional calculus, Mathematics, Volume 8 (2020), pp. 1-3 | DOI

[38] Sousa, J. Vanterler da C.; Oliveira, E. Capelas de On the -Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., Volume 60 (2018), pp. 72-91 | DOI

[39] Wang, C.; Xu, T.-Z. Hyers-Ulam stability of fractional linear differential equations involving Caputo fractional derivatives, Appl. Math., Volume 60 (2015), pp. 383-393 | DOI | Zbl

[40] Wang, C.; Xu, T.-Z. Hyers-Ulam stability of a class of fractional linear differential equations, Kodai Math. J., Volume 38 (2015), pp. 510-520 | Zbl | DOI

[41] Zada, A.; Shaleena, S.; Ahmad, M. Analysis of solutions of the integro-differential equations with generalized Liouville- Caputo fractional derivative by -Laplace transform, Int. J. Appl. Comput. Math., Volume 8 (2022), pp. 1-19 | DOI | Zbl

Cité par Sources :