Common fixed point theorems for two mappings in $b$-metric-like spaces
Journal of nonlinear sciences and its applications, Tome 17 (2024) no. 2, p. 93-99.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The concept of $b$-metric-like space is a generalization of the notions of partial metric space, metric-like space and $b$-metric space. In the present paper, we establish the existence and uniqueness of common fixed points in a $b$-metric-like space. Then we derive some common fixed point results in partial metric spaces, metric-like spaces, and $b$-metric spaces.
DOI : 10.22436/jnsa.017.02.02
Classification : 47H10, 54H25
Keywords: Common fixed point, \(b\)-metric-like space, partial metric space

Najmabadi, B. M. 1 ; Shateri, T. L.  1

1 Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, P.O. Box 397, Iran
@article{JNSA_2024_17_2_a1,
     author = {Najmabadi, B. M. and Shateri, T. L. },
     title = {Common fixed point theorems for two mappings in \(b\)-metric-like spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {93-99},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2024},
     doi = {10.22436/jnsa.017.02.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.02.02/}
}
TY  - JOUR
AU  - Najmabadi, B. M.
AU  - Shateri, T. L. 
TI  - Common fixed point theorems for two mappings in \(b\)-metric-like spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2024
SP  - 93
EP  - 99
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.02.02/
DO  - 10.22436/jnsa.017.02.02
LA  - en
ID  - JNSA_2024_17_2_a1
ER  - 
%0 Journal Article
%A Najmabadi, B. M.
%A Shateri, T. L. 
%T Common fixed point theorems for two mappings in \(b\)-metric-like spaces
%J Journal of nonlinear sciences and its applications
%D 2024
%P 93-99
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.02.02/
%R 10.22436/jnsa.017.02.02
%G en
%F JNSA_2024_17_2_a1
Najmabadi, B. M.; Shateri, T. L. . Common fixed point theorems for two mappings in \(b\)-metric-like spaces. Journal of nonlinear sciences and its applications, Tome 17 (2024) no. 2, p. 93-99. doi : 10.22436/jnsa.017.02.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.02.02/

[1] Alghamdi, M. A.; Hussain, N.; Salimi, P. Fixed point and coupled fixed point theorems on b-metric-like spaces, J. Inequal. Appl., Volume 2013 (2013), pp. 1-15 | DOI | Zbl

[2] Altun, I.; Abbas, M.; Simsek, H. A fixed point theorem on cone metric space with new type contractivity, Banach J. Math. Anal., Volume 5 (2011), pp. 15-24 | Zbl | DOI

[3] Amini-Harandi, A. Mettric-like spaces, partial metric spaces and fixed points, Fixed point Theory Appl., Volume 2012 (2012), pp. 1-10 | DOI

[4] Ansari, A. H.; Ege, O.; Radenovi´c, S. Some fixed point results on complex valued Gbmetric spaces, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM, Volume 112 (2018), pp. 463-472 | Zbl | DOI

[5] Aydi, H.; Bota, M.-F.; Karapinar, E.; Moradi, S. A common fixed point for weak -contractions on b-metric spaces, Fixed Point Theory, Volume 13 (2012), pp. 337-346

[6] Bakhtin, I. A. The contraction mapping principle in quasimetric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst., Volume 30 (1989), pp. 26-37

[7] Bota, M.-F.; Karapınar, E.; Mles¸nite, O. Ulam-Hyers stability results for fixed point problems via - -contractive mapping in (b)-metric space, Abstr. Appl. Anal., Volume 2013 (2013), pp. 1-6 | DOI

[8] Czerwik, S. Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, Volume 1 (1993), pp. 5-11

[9] Ege, O. Complex valued rectangular b-metric spaces and an application to linear equations, J. Nonlinear Sci. Appl., Volume 8 (2015), pp. 1014-1021 | Zbl | DOI

[10] Ege, O. Complex valued Gb-metric spaces, J. Comput. Anal. Appl., Volume 21 (2016), pp. 363-368

[11] Ege, O. Some fixed point theorems in complex valued Gb-metric spaces, J. Nonlinear Convex Anal., Volume 18 (2017), pp. 1997-2005

[12] Matthews, S. G. Partial metric topology, Proc. 8th Summer Conference on General Topology and Applications, New York Acad. Sci., New York, Volume 728 (1994), pp. 183-197 | DOI

[13] Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b-metric spaces, J. Fixed Point Theory Appl., Volume 19 (2017), pp. 2153-2163 | DOI | Zbl

[14] Mitrovi´, Z. D. A note on the results of Suzuki, Miculescu and Mihail, J. Fixed Point Theory Appl., Volume 21 (2019), pp. 1-4 | DOI | Zbl

[15] Rao, K. P. R.; Parvathi, K. V. S.; Imdad, M. A coupled coincidence point theorem on ordered partial b-metric-like spaces, Electron. J. Math. Anal. Appl., Volume 3 (2015), pp. 141-149 | Zbl

[16] Suzuki, T. Basic inequality on a b-metric space and its applications, J. Inequal. Appl., Volume 2017 (2017), pp. 1-11 | DOI | Zbl

[17] Suzuki, T. Fixed point theorems for single- and set-valued F-contractions in b-metric spaces, J. Fixed Point Theory Appl., Volume 20 (2018), pp. 1-12 | Zbl | DOI

[18] Zoto, K.; Radenovi´c, S.; Ansari, A. H. On some fixed point results for (s, p, )-contractive mappings in b-metric-like spaces and applications to integral equations, Open Math., Volume 16 (2018), pp. 235-249 | DOI

[19] Zoto, K.; Rhoades, B. E.; Radenovi´, S. Some generalizations for ( - ,')-contractions in b-metric-like spaces and an application, Fixed Point Theory Appl., Volume 2017 (2017), pp. 1-20 | DOI

Cité par Sources :