On the oscillatory behavior of solutions of canonical and noncanonical even-order neutral differential equations with distributed deviating arguments
Journal of nonlinear sciences and its applications, Tome 17 (2024) no. 2, p. 82-92.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The oscillatory behavior of solutions of an even-order neutral differential equation with distributed deviating arguments is considered using Riccati, generalized Riccati transformations, integral averaging technique of Philos type and the theory of comparison. New sufficient conditions are established in both canonical and noncanonical cases. Two examples are given to support our results.
DOI : 10.22436/jnsa.017.02.01
Classification : 34C10, 34K11
Keywords: Oscillation, even-order, neutral differential equations

El-Gaber, A. A.  1

1 Department of Mathematics and Computer Science, Faculty of Science, Menoufia University, Shebin El-Koom, Egypt
@article{JNSA_2024_17_2_a0,
     author = {El-Gaber, A. A. },
     title = {On the oscillatory behavior of solutions of canonical and noncanonical  even-order neutral differential equations with distributed deviating arguments},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {82-92},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2024},
     doi = {10.22436/jnsa.017.02.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.02.01/}
}
TY  - JOUR
AU  - El-Gaber, A. A. 
TI  - On the oscillatory behavior of solutions of canonical and noncanonical  even-order neutral differential equations with distributed deviating arguments
JO  - Journal of nonlinear sciences and its applications
PY  - 2024
SP  - 82
EP  - 92
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.02.01/
DO  - 10.22436/jnsa.017.02.01
LA  - en
ID  - JNSA_2024_17_2_a0
ER  - 
%0 Journal Article
%A El-Gaber, A. A. 
%T On the oscillatory behavior of solutions of canonical and noncanonical  even-order neutral differential equations with distributed deviating arguments
%J Journal of nonlinear sciences and its applications
%D 2024
%P 82-92
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.02.01/
%R 10.22436/jnsa.017.02.01
%G en
%F JNSA_2024_17_2_a0
El-Gaber, A. A. . On the oscillatory behavior of solutions of canonical and noncanonical  even-order neutral differential equations with distributed deviating arguments. Journal of nonlinear sciences and its applications, Tome 17 (2024) no. 2, p. 82-92. doi : 10.22436/jnsa.017.02.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.02.01/

[1] Agarwal, R. P.; Bohner, M.; Li, T.; Zhang, C. Oscillation of second-order differential equations with a sublinear neutral term, Carpathian J. Math., Volume 30 (2014), pp. 1-6 | Zbl

[2] Agarwal, R. P.; Grace, S. R.; O’Regan, D. Oscillation theory for difference and functional differential equations, Kluwer Academic Publishers, Dordrecht, 2000 | DOI

[3] Agarwal, R. P.; Zhang, C.; Li, T. Some remarks on oscillation of second order neutral differential equations, Appl. Math. Comput., Volume 274 (2016), pp. 178-181 | Zbl | DOI

[4] Bohner, M.; Li, T. Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient, Appl. Math. Lett., Volume 37 (2014), pp. 72-76 | Zbl | DOI

[5] Dˇzurina, J.; Grace, S. R.; Jadlovsk´a, I.; Li, T. Oscillation criteria for second-order Emden-Fowler delay differential equations with a sublinear neutral term, Math. Nachr., Volume 293 (2020), pp. 910-922 | DOI | Zbl

[6] El-Gaber, A. A.; El-Sheikh, M. M. A. Oscillation of fourth-order neutral differential equations with distributed deviating arguments, J. Math. Comput. Sci., Volume 28 (2023), pp. 60-71

[7] El-Gaber, A. A.; El-Sheikh, M. M. A.; El-Saedy, E. I. Oscillation of super-linear fourth-order differential equations with several sub-linear neutral terms, Bound. Value Probl., Volume 2022 (2022), pp. 1-14 | DOI | Zbl

[8] Grace, S. R.; Abbas, S.; Graef, J. R. Oscillation of even order nonlinear dynamic equations on time-scales, Math. Morav., Volume 26 (2022), pp. 47-55

[9] Li, T.; Bacul´ıkov´a, B.; Dˇzurina, J.; Zhang, C. Oscillation of fourth-order neutral differential equations with p-Laplacian like operators, Bound. Value Probl., Volume 2014 (2014), pp. 1-9 | Zbl | DOI

[10] Li, T.; Frassu, S.; Viglialora, G. Combining effects ensuring boundedness in an attraction-repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., Volume 74 (2023), pp. 1-21 | DOI | Zbl

[11] Li, T.; Pintus, N.; Viglialoro, G. Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., Volume 70 (2019), pp. 1-18 | DOI | Zbl

[12] Li, T.; Rogovchenko, Y. V. Oscillation of second-order neutral differential equations, Math. Nachr., Volume 288 (2015), pp. 1150-1162 | DOI

[13] Li, T.; Rogovchenko, Y. V. Oscillation criteria for even-order neutral differential equations, Appl. Math. Lett., Volume 61 (2016), pp. 35-41 | DOI | Zbl

[14] Li, T.; Rogovchenko, Y. V. On asymptotic behavior of solutions to higher-order sublinear Emden-Fowler delay differential equations, Appl. Math. Lett., Volume 67 (2017), pp. 53-59 | DOI | Zbl

[15] Li, T.; Rogovchenko, Y. V. Oscillation criteria for second-order superlinear Emden-Fowler neutral differential equations, Monatsh. Math., Volume 184 (2017), pp. 489-500 | Zbl | DOI

[16] Li, T.; Rogovchenko, Y. V. On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations, Appl. Math. Lett., Volume 105 (2020), pp. 1-7 | DOI | Zbl

[17] Li, T.; Rogovchenko, Y. V.; Zhang, C. Oscillation of second-order neutral differential equations, Funkcial. Ekvac., Volume 56 (2013), pp. 111-120 | DOI

[18] Li, T.; Viglialoro, G. Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime, Differential Integral Equations, Volume 34 (2021), pp. 315-336 | Zbl

[19] Moaaz, O.; Elabbasy, E. M.; Muhib, A. Oscillation criteria for even-order neutral differential equations with distributed deviating arguments, Adv. Difference Equ., Volume 2019 (2019), pp. 1-10 | Zbl | DOI

[20] Philos, Ch. G. On the existence of nonoscillatory solutions tending to zero at 1 for differential equations with positive delays, Arch. Math. (Basel), Volume 36 (1981), pp. 168-178 | DOI | Zbl

[21] Philos, C. A new criterion for the oscillatory and asymptotic behavior of delay differential equations, Bull. Acad. Polon. Sci. S´er. Sci. Math., Volume 29 (1981), pp. 367-370

[22] Tian, Y.; Cail, Y.; Fu, Y.; Li, T. Oscillation and asymptotic behavior of third-order neutral differential equations with distributed deviating arguments, Adv. Difference Equ., Volume 2015 (2015), pp. 1-14 | DOI | Zbl

[23] Wang, P. Oscillation criteria for second-order neutral equations with distributed deviating arguments, Comput. Math. Appl., Volume 47 (2004), pp. 1935-1946 | Zbl | DOI

[24] Chen, H. Wang. G.; Jiang, Y.; Jiang, C.; Li, T. Asymptotic behavior of third-order neutral differential equations with distributed deviating arguments, J. Math. Comput. Sci., Volume 17 (2017), pp. 194-199 | Zbl

[25] Zhang, C.; Agarwal, R. P.; Bohner, M.; Li, T. New results for oscillatory behavior of even-order half-linear delay differential equations, Appl. Math. Lett., Volume 26 (2013), pp. 179-183 | DOI | Zbl

[26] Zhang, C.; Li, T.; Sun, B.; Thandapani, E. On oscillation of higher-order half-linear delay differential equations, Appl. Math. Lett., Volume 24 (2011), pp. 1618-1621 | DOI | Zbl

Cité par Sources :