Voir la notice de l'article provenant de la source International Scientific Research Publications
Sow, T. M. M.  1
@article{JNSA_2024_17_1_a3, author = {Sow, T. M. M. }, title = {Strong convergence of perturbed {Mann} iteration for systems of variational inequality problems over the set of common fixed points of a finite family of demicontractive mappings in {Banach} spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {70-81}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2024}, doi = {10.22436/jnsa.017.01.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.01.04/} }
TY - JOUR AU - Sow, T. M. M. TI - Strong convergence of perturbed Mann iteration for systems of variational inequality problems over the set of common fixed points of a finite family of demicontractive mappings in Banach spaces JO - Journal of nonlinear sciences and its applications PY - 2024 SP - 70 EP - 81 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.01.04/ DO - 10.22436/jnsa.017.01.04 LA - en ID - JNSA_2024_17_1_a3 ER -
%0 Journal Article %A Sow, T. M. M. %T Strong convergence of perturbed Mann iteration for systems of variational inequality problems over the set of common fixed points of a finite family of demicontractive mappings in Banach spaces %J Journal of nonlinear sciences and its applications %D 2024 %P 70-81 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.01.04/ %R 10.22436/jnsa.017.01.04 %G en %F JNSA_2024_17_1_a3
Sow, T. M. M. . Strong convergence of perturbed Mann iteration for systems of variational inequality problems over the set of common fixed points of a finite family of demicontractive mappings in Banach spaces. Journal of nonlinear sciences and its applications, Tome 17 (2024) no. 1, p. 70-81. doi : 10.22436/jnsa.017.01.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.01.04/
[1] A general iterative method for finding common fixed point of finite family of demicontractive mappings with accretive variational inequality problems in Banach spaces, Nonlinear Stud., Volume 27 (2020), pp. 213-236 | DOI | Zbl
[2] Metric and generalized projection operators in Banach spaces: properties and applications, In: Theory and applications of nonlinear operators of accretive and monotone type, Dekker, New York, Volume 178 (1996), pp. 15-50 | DOI
[3] Approximation of common solution of finite family of monotone inclusion and fixed point problems for demicontractive multivalued mappings in CAT(0) spaces, Ric. Mat., Volume 69 (2020), pp. 13-34 | DOI | Zbl
[4] Quelques propri´et´es des op´erateurs angle-born´es etn-cycliquement monotones, Isr. J. Math., Volume 26 (1977), pp. 137-150 | DOI
[5] On the method of alternating resolvents, Nonlinear Anal., Volume 74 (2011), pp. 5147-5160 | Zbl | DOI
[6] Convergenge theorem for sequence of nonlinear operator in Banach spaces, Math. Z., Volume 100 (1967), pp. 201-225 | DOI
[7] An interior point method with Bregman functions for the variational inequality problem with paramonotone operators, Math. Programming, Volume 81 (1998), pp. 373-400 | DOI | Zbl
[8] Modified block iterative algorithm for solving convex feasibility problems in Banach spaces, J. Inequal. Appl., Volume 2010 (2010), pp. 1-14 | Zbl | DOI
[9] A modified Mann algorithm for the general split problem of demicontractive operators, Results Nonlinear Anal., Volume 5 (2022), pp. 213-221 | DOI
[10] The solution by iteration of nonlinear equations in certain Banach spaces, J. Nigerian Math. Soc., Volume 3 (1984), pp. 57-62 | Zbl
[11] Geometric properties of Banach spaces and nonlinear iterations, Springer-Verlag, London, 2009
[12] Geometry of Banach space, duality mapping and nonlinear problems, Kluwer Academic Publishers Group, Dordrecht, 1990 | DOI
[13] Common solutions to a system of variational inequalities over the set of common fixed points of demicontractive operators, C. R. Math. Acad. Sci. Paris, Volume 335 (2017), pp. 1168-1177 | DOI
[14] Fixed points of nonexpansive maps, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 957-961
[15] A Method for Solving the Variational Inequality Problem and Fixed Point Problems in Banach Spaces, Tamkang J. Math., Volume 53 (2022), pp. 23-36 | Zbl | DOI
[16] Fixed point theorems for assymptoticaly nonexpansive mapping, Nonliear Anal., Volume 22 (1994), pp. 1345-1355 | DOI
[17] Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., Volume 16 (2008), pp. 899-912 | DOI | Zbl
[18] Mean value methods in iteration, Proc. Amer. Math. Soc., Volume 4 (1953), pp. 506-510 | DOI
[19] Some notes on Ishikawa iteration for multivalued mappings, Bull. Korean Math. Soc., Volume 48 (2011), pp. 575-584 | Zbl | DOI
[20] A path convergence theorem and construction of fixed points for nonexpansive mappings in certain Banach spaces, Carpathian J. Math., Volume 32 (2016), pp. 241-250 | Zbl
[21] Modified Krasnoselski-Mann type iterative algorithm with strong convergence for hierarchical fixed point problem and split monotone variational inclusions, J. Comput. Appl. Math., Volume 393 (2021), pp. 1-13 | DOI | Zbl
[22] Iterative algorithms for nonlinear operators, J. London Math. Soc. (2), Volume 66 (2002), pp. 240-256 | DOI
[23] The hybrid steepest-descent method for variational inequality problems over the intersection of the fixed point sets of nonexpansive mappings, In: Inherently parallel algorithms in feasibility and optimization and their applications, Stud. Comput. Math., Volume 8 (2001), pp. 473-504 | Zbl | DOI
[24] Variational inequalities with generalized monotone operators, Math. Oper. Res., Volume 19 (1994), pp. 691-705 | DOI
Cité par Sources :