Strong convergence of perturbed Mann iteration for systems of variational inequality problems over the set of common fixed points of a finite family of demicontractive mappings in Banach spaces
Journal of nonlinear sciences and its applications, Tome 17 (2024) no. 1, p. 70-81.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we propose an iterative algorithm, which is based on the Mann iterative method for solving simultaneously common fixed point problem with a finite family of demicontractive mappings and systems of variational inequalities involving an infinite family of strongly accretive operators. Under suitable assumptions, we prove the strong convergence of this algorithm in Banach spaces. Application to systems of constrained convex minimization problem is provided to support our main results. The results of this paper improve and extend results of [M. Eslamian, C. R. Math. Acad. Sci. Paris, $\bf 355$ (2017), 1168--1177], and of many others.
DOI : 10.22436/jnsa.017.01.04
Classification : 47H05, 47J05, 47J25
Keywords: Perturbed Mann iteration, systems of variational inequalities, demicontractive operators, strongly accretive operators

Sow, T. M. M.  1

1 Universite Amadou Mahtar Mbow, Senegal
@article{JNSA_2024_17_1_a3,
     author = {Sow, T. M. M. },
     title = {Strong convergence of perturbed {Mann} iteration for systems of variational inequality problems over the set of common fixed points of a finite family of demicontractive mappings in {Banach} spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {70-81},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2024},
     doi = {10.22436/jnsa.017.01.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.01.04/}
}
TY  - JOUR
AU  - Sow, T. M. M. 
TI  - Strong convergence of perturbed Mann iteration for systems of variational inequality problems over the set of common fixed points of a finite family of demicontractive mappings in Banach spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2024
SP  - 70
EP  - 81
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.01.04/
DO  - 10.22436/jnsa.017.01.04
LA  - en
ID  - JNSA_2024_17_1_a3
ER  - 
%0 Journal Article
%A Sow, T. M. M. 
%T Strong convergence of perturbed Mann iteration for systems of variational inequality problems over the set of common fixed points of a finite family of demicontractive mappings in Banach spaces
%J Journal of nonlinear sciences and its applications
%D 2024
%P 70-81
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.01.04/
%R 10.22436/jnsa.017.01.04
%G en
%F JNSA_2024_17_1_a3
Sow, T. M. M. . Strong convergence of perturbed Mann iteration for systems of variational inequality problems over the set of common fixed points of a finite family of demicontractive mappings in Banach spaces. Journal of nonlinear sciences and its applications, Tome 17 (2024) no. 1, p. 70-81. doi : 10.22436/jnsa.017.01.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.01.04/

[1] Alakoya, T. O.; Jolaoso, L. O.; Mewomo, O. T. A general iterative method for finding common fixed point of finite family of demicontractive mappings with accretive variational inequality problems in Banach spaces, Nonlinear Stud., Volume 27 (2020), pp. 213-236 | DOI | Zbl

[2] Alber, Y. I. Metric and generalized projection operators in Banach spaces: properties and applications, In: Theory and applications of nonlinear operators of accretive and monotone type, Dekker, New York, Volume 178 (1996), pp. 15-50 | DOI

[3] Aremu, K. O.; Jolaoso, L. O.; Izuchukwu, C.; Mewomo, O. T. Approximation of common solution of finite family of monotone inclusion and fixed point problems for demicontractive multivalued mappings in CAT(0) spaces, Ric. Mat., Volume 69 (2020), pp. 13-34 | DOI | Zbl

[4] Baillon, J. B.; Haddad, G. Quelques propri´et´es des op´erateurs angle-born´es etn-cycliquement monotones, Isr. J. Math., Volume 26 (1977), pp. 137-150 | DOI

[5] Boikanyo, O. A.; Moros¸anu, G. On the method of alternating resolvents, Nonlinear Anal., Volume 74 (2011), pp. 5147-5160 | Zbl | DOI

[6] Browder, F. E. Convergenge theorem for sequence of nonlinear operator in Banach spaces, Math. Z., Volume 100 (1967), pp. 201-225 | DOI

[7] Censor, Y.; Iusem, A. N.; Zenios, S. A. An interior point method with Bregman functions for the variational inequality problem with paramonotone operators, Math. Programming, Volume 81 (1998), pp. 373-400 | DOI | Zbl

[8] Chang, S.; Kim, J. K.; Wang, X. R. Modified block iterative algorithm for solving convex feasibility problems in Banach spaces, J. Inequal. Appl., Volume 2010 (2010), pp. 1-14 | Zbl | DOI

[9] Charoensawan, P.; Suparatulatorn, R. A A modified Mann algorithm for the general split problem of demicontractive operators, Results Nonlinear Anal., Volume 5 (2022), pp. 213-221 | DOI

[10] Chidume, C. E. The solution by iteration of nonlinear equations in certain Banach spaces, J. Nigerian Math. Soc., Volume 3 (1984), pp. 57-62 | Zbl

[11] Chidume, C. E. Geometric properties of Banach spaces and nonlinear iterations, Springer-Verlag, London, 2009

[12] Cioranescu, I. Geometry of Banach space, duality mapping and nonlinear problems, Kluwer Academic Publishers Group, Dordrecht, 1990 | DOI

[13] Eslamian, M. Common solutions to a system of variational inequalities over the set of common fixed points of demicontractive operators, C. R. Math. Acad. Sci. Paris, Volume 335 (2017), pp. 1168-1177 | DOI

[14] Halpern, B. Fixed points of nonexpansive maps, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 957-961

[15] Khuangsatung, W.; Kangtunyakarn, A. A Method for Solving the Variational Inequality Problem and Fixed Point Problems in Banach Spaces, Tamkang J. Math., Volume 53 (2022), pp. 23-36 | Zbl | DOI

[16] Lim, T.-C.; Xu, H. K. Fixed point theorems for assymptoticaly nonexpansive mapping, Nonliear Anal., Volume 22 (1994), pp. 1345-1355 | DOI

[17] Maing´e, P.-E. Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., Volume 16 (2008), pp. 899-912 | DOI | Zbl

[18] Mann, W. R. Mean value methods in iteration, Proc. Amer. Math. Soc., Volume 4 (1953), pp. 506-510 | DOI

[19] Song, Y.; Cho, Y. J. Some notes on Ishikawa iteration for multivalued mappings, Bull. Korean Math. Soc., Volume 48 (2011), pp. 575-584 | Zbl | DOI

[20] Sow, T. M. M.; Djitte, N.; Chidume, C. E. A path convergence theorem and construction of fixed points for nonexpansive mappings in certain Banach spaces, Carpathian J. Math., Volume 32 (2016), pp. 241-250 | Zbl

[21] D.-J.Wen Modified Krasnoselski-Mann type iterative algorithm with strong convergence for hierarchical fixed point problem and split monotone variational inclusions, J. Comput. Appl. Math., Volume 393 (2021), pp. 1-13 | DOI | Zbl

[22] Xu, H.-K. Iterative algorithms for nonlinear operators, J. London Math. Soc. (2), Volume 66 (2002), pp. 240-256 | DOI

[23] Yamada, I. The hybrid steepest-descent method for variational inequality problems over the intersection of the fixed point sets of nonexpansive mappings, In: Inherently parallel algorithms in feasibility and optimization and their applications, Stud. Comput. Math., Volume 8 (2001), pp. 473-504 | Zbl | DOI

[24] Yao, J. C. Variational inequalities with generalized monotone operators, Math. Oper. Res., Volume 19 (1994), pp. 691-705 | DOI

Cité par Sources :