Voir la notice de l'article provenant de la source International Scientific Research Publications
Beg, I. 1 ; Roy, K. 2 ; Saha, M. 3
@article{JNSA_2024_17_1_a2, author = {Beg, I. and Roy, K. and Saha, M.}, title = {\(S^{JS}\)-metric spaces: a survey}, journal = {Journal of nonlinear sciences and its applications}, pages = {30-69}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2024}, doi = {10.22436/jnsa.017.01.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.01.03/} }
TY - JOUR AU - Beg, I. AU - Roy, K. AU - Saha, M. TI - \(S^{JS}\)-metric spaces: a survey JO - Journal of nonlinear sciences and its applications PY - 2024 SP - 30 EP - 69 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.01.03/ DO - 10.22436/jnsa.017.01.03 LA - en ID - JNSA_2024_17_1_a2 ER -
%0 Journal Article %A Beg, I. %A Roy, K. %A Saha, M. %T \(S^{JS}\)-metric spaces: a survey %J Journal of nonlinear sciences and its applications %D 2024 %P 30-69 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.01.03/ %R 10.22436/jnsa.017.01.03 %G en %F JNSA_2024_17_1_a2
Beg, I.; Roy, K.; Saha, M. \(S^{JS}\)-metric spaces: a survey. Journal of nonlinear sciences and its applications, Tome 17 (2024) no. 1, p. 30-69. doi : 10.22436/jnsa.017.01.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.01.03/
[1] Fixed point theory for generalized contractions on spaces with two metrics, J. Math. Anal. Appl., Volume 248 (2000), pp. 402-414 | DOI
[2] Best proximity points: Global optimal approximate solution, J. Global Optim., Volume 46 (2011), pp. 15-21 | Zbl | DOI
[3] Proximity point theorems generalizing the contraction principle, Nonlinear Anal., Volume 74 (2011), pp. 5844-5850 | Zbl | DOI
[4] Generalized cone metric spaces, J. Nonlinear Sci. Appl., Volume 3 (2010), pp. 21-31 | DOI
[5] Best proximity points in noncommutative Banach spaces, Comput. Appl. Math., Volume 41 (2022), pp. 1-11 | Zbl | DOI
[6] SJS-metric and topological spaces, J. Math. Ext., Volume 15 (2021), pp. 1-16 | Zbl
[7] Ekeland’s variational principle in SJS-metric spaces, Facta Univ. Ser. Math. Inform., Volume 36 (2021), pp. 1117-1127
[8] Best SJS-proximity point on an ordered sequential SJS-metric space with an application to variational inequality problem, Discuss. Math. Differ. Incl. Control Optim., Volume 42 (2022), pp. 171-187 | DOI
[9] Techniques of Variational Analysis, Springer-Verlag, New York, 2005
[10] On Ekeland’s variation principle in b-metric spaces, Fixed Point Theory, Volume 12 (2011), pp. 21-28
[11] A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, Volume 57 (2000), pp. 31-37 | Zbl | DOI
[12] A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., Volume 29 (2002), pp. 531-536 | DOI | Zbl
[13] Partial metric spaces, Amer. Math. Monthly, Volume 116 (2009), pp. 708-718 | DOI
[14] Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., Volume 215 (1976), pp. 241-251 | DOI | Zbl
[15] Simulation functions: a survey of recent results, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM, Volume 113 (2019), pp. 2923-2952 | DOI | Zbl
[16] Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, Volume 1 (1993), pp. 5-11
[17] Proximity points for a class of generalized proximal contractive mapping, Int. J. Math. Arch., Volume 5 (2014), pp. 166-176
[18] Best proximity points for '-contractions and weak '-contractions, Southeast Asian Bull. Math., Volume 40 (2016), pp. 467-477 | Zbl
[19] Approximate coincidence point of two nonlinear mappings, J. Math., Volume 2013 (2013), pp. 1-4 | DOI | Zbl
[20] Generalized metric spaces and mapping with fixed point, Bull. Calcutta Math. Soc., Volume 84 (1992), pp. 329-336
[21] Generalized metric spaces: Survey, TWMS J. Pure Appl. Math., Volume 9 (2018), pp. 3-17
[22] On fixed points and periodic points under contractive mappings, J. London Math. Soc., Volume 37 (1962), pp. 74-79 | Zbl | DOI
[23] On the variational principle, J. Math. Anal. Appl., Volume 47 (1974), pp. 324-353 | DOI
[24] Extensions of two fixed point theorems of F. E. Browder, Math. Z., Volume 112 (1969), pp. 234-240 | DOI | Zbl
[25] A generalization of Ekeland’s variational principle by using the -distance with its applications, J. Inequal. Appl., Volume 2017 (2017), pp. 1-7 | Zbl | DOI
[26] Coupled fixed points for Hardy-Rogerstype operators in ordered generalized Kasahara spaces, Appl. Anal. Optim., Volume 3 (2019), pp. 29-42
[27] Sur quelques points du calcul fonctionnel, Rendic. Circ. Mat. Palermo, Volume 22 (1906), pp. 1-72 | Zbl
[28] 2-metrische R¨aume und ihre topologische Struktur, Math. Nachr., Volume 26 (1963), pp. 115-148 | DOI | Zbl
[29] On contractive mappings, Proc. Amer. Math. Soc., Volume 40 (1973), pp. 604-608 | DOI
[30] Some new results on common coupled fixed points of two hybrid pair of mappings in partial metric spaces, J. Nonlinear Funct. Anal., Volume 2019 (2019)
[31] Coupled fixed points of nonlinear operators with applications, Nonlinear Anal., Volume 11 (1987), pp. 623-632 | DOI | Zbl
[32] Ekeland’s variational principle and minimization Takahashi’s theorem in generalized metric spaces, Mathematics, Volume 6 (2018), pp. 1-14 | Zbl
[33] Dislocated topologies, J. Electr. Eng., Volume 51 (2000), pp. 3-7 | Zbl
[34] Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., Volume 332 (2007), pp. 1468-1476 | DOI
[35] '-best proximity point theorems and applications to variational inequality problems, J. Fixed Point Theory Appl., Volume 19 (2017), pp. 3177-3189 | DOI
[36] On cone metric spaces: a survey, Nonlinear Anal., Volume 74 (2011), pp. 2591-2601 | Zbl | DOI
[37] A generalized metric space and related fixed point theorems, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-14 | Zbl | DOI
[38] Commuting mappings and fixed points, Amer. Math. Monthly, Volume 83 (1976), pp. 261-263 | DOI
[39] On interpolative Hardy-Rogers type contractions, Symmetry, Volume 11 (2018), pp. 1-7 | DOI
[40] On fuzzy metric spaces, Fuzzy Sets and Systems, Volume 12 (1984), pp. 215-229 | DOI
[41] General topology, D. Van Nostrand Co., Toronto-New York-London, 1955
[42] Fixed point theorems in bimetric space endowed with binary relation and applications, Miskolc Math. Notes, Volume 16 (2015), pp. 939-951 | Zbl | DOI
[43] A new approach to the study of fixed point theory for simulation functions, Filomat, Volume 29 (2015), pp. 1189-1194 | DOI | Zbl
[44] Fixed point theory in distance spaces, Springer, Cham, 2014 | DOI
[45] Modular function spaces, Marcel Dekker, New York, 1988
[46] Un’osservazione sulle contrazioni metriche, Rend. Sem. Mat. Univ. Padova, Volume 40 (1968), pp. 139-143 | Zbl
[47] I. Meghea, Old City Publishing, Philadelphia, PA; ´ Editions des Archives Contemporaires, Paris, 2009
[48] Fixed point theorems for F-Contractions in dislocated Sb-metric spaces, Int. J. Anal. Appl., Volume 17 (2019), pp. 734-751 | Zbl
[49] Probabilistic theories of relations, Proc. Nat. Acad. Sci. U.S.A., Volume 37 (1951), pp. 178-180 | DOI
[50] A new approach to generalized metric spaces, J. Nonlinear Convex Anal., Volume 7 (2006), pp. 289-297
[51] A note on the paper “A fixed point theorems in Sb-metric spaces”, Filomat, Volume 31 (2017), pp. 3335-3346 | DOI | Zbl
[52] Sequentially compact SJS-metric spaces, Commun. Optim. Theory, Volume 2020 (2020), pp. 1-7
[53] Fixed point of generalized contractive mappings on SJS-metric spaces with two metrics, Theory Approx. Appl., Volume 14 (2020), pp. 1-14
[54] Fixed point of contractive mappings of integral type over an SJS-metric space, Tamkang J. Math., Volume 52 (2021), pp. 267-280 | DOI
[55] Weakly Picard operations on a set with two metrics, Fixed Point Theory, Volume 6 (2005), pp. 323-331
[56] Fixed point theorems for A-contraction mappings of integral type, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 84-92 | DOI
[57] Fixed point results for implicit contractions on spaces with two metrics, J. Inequal. Appl., Volume 2014 (2014), pp. 1-9 | Zbl | DOI
[58] A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik, Volume 64 (2012), pp. 258-266 | Zbl | EuDML
[59] On fixed and periodic points of a class of mappings, J. London Math. Soc. (2), Volume 5 (1972), pp. 571-576 | DOI | Zbl
[60] A new approach of couple fixed point results on JS- metric spaces, arXiv preprint arXiv:1606.05970 (2016), pp. 1-17 | DOI
[61] Fixed point theorem for mappings in bimetric space, Res. J. Math. Stat. Sci., Volume 3 (2015), pp. 13-14
[62] A fixed point theorem in Sb-metric spaces, J. Math. Comput. Sci., Volume 16 (2016), pp. 131-139
[63] Coincidence point and common fixed point theorems in the product spaces of quasi-ordered metric spaces, J. Nonlinear Var. Anal., Volume 1 (2017), pp. 175-199 | Zbl
Cité par Sources :