$S^{JS}$-metric spaces: a survey
Journal of nonlinear sciences and its applications, Tome 17 (2024) no. 1, p. 30-69.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The aim of this survey article, is to present in one place the recently published results on $S^{JS}$-metric spaces, their generalizations and applications. We start with $S^{JS}$-metric spaces and study their properties. Then we deal with abstract $S^{JS}$-topological spaces induced by $S^{JS}$-metric and present several classical results including Cantor's intersection theorem. Next the notion of sequentially compactness on $S^{JS}$-metric spaces and properties of sequentially compact $S^{JS}$-metric spaces are studied. Some fixed point theorems are obtained for integral type contractive mappings. Finally we prove several new results on fixed point for rational type contractive mappings, obtain Ekeland's variational principle on $S^{JS}$-metric spaces as an application and in the end also present results regarding best $S^{JS}$-proximity point with application.
DOI : 10.22436/jnsa.017.01.03
Classification : 54E35, 54E45, 54A05, 47H10, 54D30, 54H25, 46S99
Keywords: \(S^{JS}\)-metric space, \(S^{JS}\)-topological space, \(S_{b} \)-metric space, generalized metric, Cantor's intersection property, Ekeland's variational principle, contractive type mapping, \(\mathcal{Z}\)-type contractive map, rational type contractive map, fixed point, \(S^{JS}\)-proximity point

Beg, I. 1 ; Roy, K. 2 ; Saha, M. 3

1 Department of Mathematics and Statistical Sciences, Lahore School of Economics, Lahore 53200, Pakistan
2 Department of Mathematics, Supreme Knowledge Foundation Group of Institutions, Chandannagar, Hooghly-712139, West Bengal, India
3 Department of Mathematics, The University of Burdwan, Purba Bardhaman-713104, West Bengal, India
@article{JNSA_2024_17_1_a2,
     author = {Beg, I. and Roy, K. and Saha, M.},
     title = {\(S^{JS}\)-metric spaces: a  survey},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {30-69},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2024},
     doi = {10.22436/jnsa.017.01.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.01.03/}
}
TY  - JOUR
AU  - Beg, I.
AU  - Roy, K.
AU  - Saha, M.
TI  - \(S^{JS}\)-metric spaces: a  survey
JO  - Journal of nonlinear sciences and its applications
PY  - 2024
SP  - 30
EP  - 69
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.01.03/
DO  - 10.22436/jnsa.017.01.03
LA  - en
ID  - JNSA_2024_17_1_a2
ER  - 
%0 Journal Article
%A Beg, I.
%A Roy, K.
%A Saha, M.
%T \(S^{JS}\)-metric spaces: a  survey
%J Journal of nonlinear sciences and its applications
%D 2024
%P 30-69
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.01.03/
%R 10.22436/jnsa.017.01.03
%G en
%F JNSA_2024_17_1_a2
Beg, I.; Roy, K.; Saha, M. \(S^{JS}\)-metric spaces: a  survey. Journal of nonlinear sciences and its applications, Tome 17 (2024) no. 1, p. 30-69. doi : 10.22436/jnsa.017.01.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.01.03/

[1] Agarwal, R. P.; O’Regan, D. Fixed point theory for generalized contractions on spaces with two metrics, J. Math. Anal. Appl., Volume 248 (2000), pp. 402-414 | DOI

[2] Basha, S. S. Best proximity points: Global optimal approximate solution, J. Global Optim., Volume 46 (2011), pp. 15-21 | Zbl | DOI

[3] Basha, S. Proximity point theorems generalizing the contraction principle, Nonlinear Anal., Volume 74 (2011), pp. 5844-5850 | Zbl | DOI

[4] Beg, I.; Abbas, M.; Nazir, T. Generalized cone metric spaces, J. Nonlinear Sci. Appl., Volume 3 (2010), pp. 21-31 | DOI

[5] Beg, I.; Bartwal, A.; Rawat, S.; Dimri, R. C. Best proximity points in noncommutative Banach spaces, Comput. Appl. Math., Volume 41 (2022), pp. 1-11 | Zbl | DOI

[6] Beg, I.; Roy, K.; Saha, M. SJS-metric and topological spaces, J. Math. Ext., Volume 15 (2021), pp. 1-16 | Zbl

[7] Beg, I.; Roy, K.; Saha, M. Ekeland’s variational principle in SJS-metric spaces, Facta Univ. Ser. Math. Inform., Volume 36 (2021), pp. 1117-1127

[8] Beg, I.; Roy, K.; Saha, M. Best SJS-proximity point on an ordered sequential SJS-metric space with an application to variational inequality problem, Discuss. Math. Differ. Incl. Control Optim., Volume 42 (2022), pp. 171-187 | DOI

[9] Borwein, J. M.; Zhu, Q. J. Techniques of Variational Analysis, Springer-Verlag, New York, 2005

[10] Bota, M.; Molnar, A.; Varga, C. On Ekeland’s variation principle in b-metric spaces, Fixed Point Theory, Volume 12 (2011), pp. 21-28

[11] Branciari, A. A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, Volume 57 (2000), pp. 31-37 | Zbl | DOI

[12] Branciari, A. A fixed point theorem for mappings satisfying a general contractive condition of integral type, Int. J. Math. Math. Sci., Volume 29 (2002), pp. 531-536 | DOI | Zbl

[13] Bukatin, M.; Kopperman, R.; Matthews, S.; Pajoohesh, H. Partial metric spaces, Amer. Math. Monthly, Volume 116 (2009), pp. 708-718 | DOI

[14] Caristi, J. Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., Volume 215 (1976), pp. 241-251 | DOI | Zbl

[15] Chanda, A.; Dey, L. K.; Radenivi´, S. Simulation functions: a survey of recent results, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM, Volume 113 (2019), pp. 2923-2952 | DOI | Zbl

[16] Czerwik, S. Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, Volume 1 (1993), pp. 5-11

[17] Dan, P.; Saha, M. Proximity points for a class of generalized proximal contractive mapping, Int. J. Math. Arch., Volume 5 (2014), pp. 166-176

[18] Dey, D.; Dan, P.; Saha, M. Best proximity points for '-contractions and weak '-contractions, Southeast Asian Bull. Math., Volume 40 (2016), pp. 467-477 | Zbl

[19] Dey, D.; Laha, A. K.; Saha, M. Approximate coincidence point of two nonlinear mappings, J. Math., Volume 2013 (2013), pp. 1-4 | DOI | Zbl

[20] Dhage, B. C. Generalized metric spaces and mapping with fixed point, Bull. Calcutta Math. Soc., Volume 84 (1992), pp. 329-336

[21] Doˇsenovi´c, T.; Radenovi´c, S.; Sedghi, S. Generalized metric spaces: Survey, TWMS J. Pure Appl. Math., Volume 9 (2018), pp. 3-17

[22] Edelstein, M. On fixed points and periodic points under contractive mappings, J. London Math. Soc., Volume 37 (1962), pp. 74-79 | Zbl | DOI

[23] Ekeland, I. On the variational principle, J. Math. Anal. Appl., Volume 47 (1974), pp. 324-353 | DOI

[24] Fan, K. Extensions of two fixed point theorems of F. E. Browder, Math. Z., Volume 112 (1969), pp. 234-240 | DOI | Zbl

[25] Farajzadeh, A. P.; Plubtieng, S; Hoseinpour, A. A generalization of Ekeland’s variational principle by using the -distance with its applications, J. Inequal. Appl., Volume 2017 (2017), pp. 1-7 | Zbl | DOI

[26] Filip, A. D. Coupled fixed points for Hardy-Rogerstype operators in ordered generalized Kasahara spaces, Appl. Anal. Optim., Volume 3 (2019), pp. 29-42

[27] Fr´echet, M. Sur quelques points du calcul fonctionnel, Rendic. Circ. Mat. Palermo, Volume 22 (1906), pp. 1-72 | Zbl

[28] G¨ahler, S. 2-metrische R¨aume und ihre topologische Struktur, Math. Nachr., Volume 26 (1963), pp. 115-148 | DOI | Zbl

[29] Geraghty, M. A. On contractive mappings, Proc. Amer. Math. Soc., Volume 40 (1973), pp. 604-608 | DOI

[30] Gu, F.; Shatanawi, W. Some new results on common coupled fixed points of two hybrid pair of mappings in partial metric spaces, J. Nonlinear Funct. Anal., Volume 2019 (2019)

[31] Guo, D. J.; Lakshmikantham, V. Coupled fixed points of nonlinear operators with applications, Nonlinear Anal., Volume 11 (1987), pp. 623-632 | DOI | Zbl

[32] Hashemi, E.; Saadati, R. Ekeland’s variational principle and minimization Takahashi’s theorem in generalized metric spaces, Mathematics, Volume 6 (2018), pp. 1-14 | Zbl

[33] Hitzler, P.; Seda, A. K. Dislocated topologies, J. Electr. Eng., Volume 51 (2000), pp. 3-7 | Zbl

[34] Huang, L.-G.; Zhang, X. Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., Volume 332 (2007), pp. 1468-1476 | DOI

[35] Is¸ık, H.; Sezen, M. S.; Vetro, C. '-best proximity point theorems and applications to variational inequality problems, J. Fixed Point Theory Appl., Volume 19 (2017), pp. 3177-3189 | DOI

[36] Jankovi´c, S.; Kadelburg, Z.; Radenovi´c, S. On cone metric spaces: a survey, Nonlinear Anal., Volume 74 (2011), pp. 2591-2601 | Zbl | DOI

[37] Jleli, M.; Samet, B. A generalized metric space and related fixed point theorems, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-14 | Zbl | DOI

[38] Jungck, G. Commuting mappings and fixed points, Amer. Math. Monthly, Volume 83 (1976), pp. 261-263 | DOI

[39] Karapinar, E.; Alqahtani, O.; Aydi, H. On interpolative Hardy-Rogers type contractions, Symmetry, Volume 11 (2018), pp. 1-7 | DOI

[40] Kaleva, O.; Seikkala, S. On fuzzy metric spaces, Fuzzy Sets and Systems, Volume 12 (1984), pp. 215-229 | DOI

[41] Kelley, J. L. General topology, D. Van Nostrand Co., Toronto-New York-London, 1955

[42] Khan, M. S.; Berzig, M.; Chandok, S. Fixed point theorems in bimetric space endowed with binary relation and applications, Miskolc Math. Notes, Volume 16 (2015), pp. 939-951 | Zbl | DOI

[43] Khojasteh, F.; Shukla, S.; Radenovi´c, S. A new approach to the study of fixed point theory for simulation functions, Filomat, Volume 29 (2015), pp. 1189-1194 | DOI | Zbl

[44] Kirk, W.; Shahzad, N. Fixed point theory in distance spaces, Springer, Cham, 2014 | DOI

[45] Kozlowski, W. M. Modular function spaces, Marcel Dekker, New York, 1988

[46] Maia, M. Un’osservazione sulle contrazioni metriche, Rend. Sem. Mat. Univ. Padova, Volume 40 (1968), pp. 139-143 | Zbl

[47] Principle, Ekeland Variational I. Meghea, Old City Publishing, Philadelphia, PA; ´ Editions des Archives Contemporaires, Paris, 2009

[48] Mehravaran, H.; Khanehgir, M.; Allahyari, R. Fixed point theorems for F-Contractions in dislocated Sb-metric spaces, Int. J. Anal. Appl., Volume 17 (2019), pp. 734-751 | Zbl

[49] Menger, K. Probabilistic theories of relations, Proc. Nat. Acad. Sci. U.S.A., Volume 37 (1951), pp. 178-180 | DOI

[50] Mustafa, Z.; Sims, B. A new approach to generalized metric spaces, J. Nonlinear Convex Anal., Volume 7 (2006), pp. 289-297

[51] Rohen, Y.; Doˇsenovi´c, T.; Radenovi´c, S.; A note on the paper “A fixed point theorems in Sb-metric spaces”, Filomat, Volume 31 (2017), pp. 3335-3346 | DOI | Zbl

[52] Roy, K.; Beg, I.; Saha, M. Sequentially compact SJS-metric spaces, Commun. Optim. Theory, Volume 2020 (2020), pp. 1-7

[53] Roy, K.; Saha, M.; Beg, I. Fixed point of generalized contractive mappings on SJS-metric spaces with two metrics, Theory Approx. Appl., Volume 14 (2020), pp. 1-14

[54] Roy, K.; Saha, M.; Beg, I. Fixed point of contractive mappings of integral type over an SJS-metric space, Tamkang J. Math., Volume 52 (2021), pp. 267-280 | DOI

[55] Rus, I. A.; Muresan, A. S.; Muresan, V. Weakly Picard operations on a set with two metrics, Fixed Point Theory, Volume 6 (2005), pp. 323-331

[56] Saha, M.; Dey, D. Fixed point theorems for A-contraction mappings of integral type, J. Nonlinear Sci. Appl., Volume 5 (2012), pp. 84-92 | DOI

[57] Samet, B. Fixed point results for implicit contractions on spaces with two metrics, J. Inequal. Appl., Volume 2014 (2014), pp. 1-9 | Zbl | DOI

[58] Sedghi, S.; Shobe, N.; Aliouche, A. A generalization of fixed point theorems in S-metric spaces, Mat. Vesnik, Volume 64 (2012), pp. 258-266 | Zbl | EuDML

[59] Sehgal, V. M. On fixed and periodic points of a class of mappings, J. London Math. Soc. (2), Volume 5 (1972), pp. 571-576 | DOI | Zbl

[60] Senapati, T.; Dey, L. K. A new approach of couple fixed point results on JS- metric spaces, arXiv preprint arXiv:1606.05970 (2016), pp. 1-17 | DOI

[61] Soni, G. K. Fixed point theorem for mappings in bimetric space, Res. J. Math. Stat. Sci., Volume 3 (2015), pp. 13-14

[62] Souayah, N.; Mlaiki, N. A fixed point theorem in Sb-metric spaces, J. Math. Comput. Sci., Volume 16 (2016), pp. 131-139

[63] Wu, H.-C. Coincidence point and common fixed point theorems in the product spaces of quasi-ordered metric spaces, J. Nonlinear Var. Anal., Volume 1 (2017), pp. 175-199 | Zbl

Cité par Sources :