Voir la notice de l'article provenant de la source International Scientific Research Publications
Béhi, D. A.  1
@article{JNSA_2024_17_1_a0, author = {B\'ehi, D. A. }, title = {A monotone iterative method for second order nonlinear problems with boundary conditions driven by maximal monotone multivalued operators}, journal = {Journal of nonlinear sciences and its applications}, pages = {1-18}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2024}, doi = {10.22436/jnsa.017.01.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.01.01/} }
TY - JOUR AU - Béhi, D. A. TI - A monotone iterative method for second order nonlinear problems with boundary conditions driven by maximal monotone multivalued operators JO - Journal of nonlinear sciences and its applications PY - 2024 SP - 1 EP - 18 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.01.01/ DO - 10.22436/jnsa.017.01.01 LA - en ID - JNSA_2024_17_1_a0 ER -
%0 Journal Article %A Béhi, D. A. %T A monotone iterative method for second order nonlinear problems with boundary conditions driven by maximal monotone multivalued operators %J Journal of nonlinear sciences and its applications %D 2024 %P 1-18 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.01.01/ %R 10.22436/jnsa.017.01.01 %G en %F JNSA_2024_17_1_a0
Béhi, D. A. . A monotone iterative method for second order nonlinear problems with boundary conditions driven by maximal monotone multivalued operators. Journal of nonlinear sciences and its applications, Tome 17 (2024) no. 1, p. 1-18. doi : 10.22436/jnsa.017.01.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.01.01/
[1] An iterative method for a second order problem with nonlinear two-point boundary conditions, Mat. Enseñ. Univ., Volume 19 (2011), pp. 3-14 | Zbl
[2] Nonlinear Boundary Value Problems for Differential Inclusions, Math. Nachr., Volume 244 (2002), pp. 5-25 | DOI
[3] Existence and Multiplicity Results for Second-Order Nonlinear Differential Equations with Multivalued Boundary Conditions, J. Appl. Math. Phys., Volume 7 (2019), pp. 1340-1368 | DOI
[4] Lower and upper solutions method for nonlinear second-order differential equations involving a -Laplacian operator, Afr. Diaspora J. Math., Volume 22 (2019), pp. 22-41
[5] Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London, 1973
[6] Monotone method for the Neumann problem with lower and upper solutions in the reverse order, Appl. Math. Comput., Volume 117 (2001), pp. 1-14 | DOI | Zbl
[7] Monotone iterative methods for boundary value, Differential Integral Equations, Volume 12 (1999), pp. 309-338
[8] Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985 | DOI
[9] On fixed points of multifunctions in ordered spaces, Appl. Anal., Volume 51 (1993), pp. 115-117 | DOI | Zbl
[10] The method of upper-lower solutions for nonlinear second order differential inclusions, Nonlinear Anal., Volume 67 (2007), pp. 708-726 | DOI
[11] Periodic boundary value problems for second order functional differential equations, J. Appl. Math. Comput., Volume 36 (2011), pp. 173-186 | DOI
[12] Nonlinear functional analysis and its applications, Springer-Verlag, New York, 1990 | DOI
[13] Existence and iterative solutions of a new kind of Sturm-Liouville-type boundary value problem with one-dimensional p-Laplacian, Bound. Value Probl., Volume 2016 (2016), pp. 1-11 | Zbl | DOI
Cité par Sources :