A monotone iterative method for second order nonlinear problems with boundary conditions driven by maximal monotone multivalued operators
Journal of nonlinear sciences and its applications, Tome 17 (2024) no. 1, p. 1-18.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we study the following second order differential equation: $-\left(\Phi(u'(t)) \right) '+\phi_p(u(t)) = \varepsilon f(t,u(t)) \text{ a.e. on }\Omega = [0, T]$ under nonlinear multivalued boundary value conditions which incorporate as special cases the classicals boundary value conditions of type Dirichlet, Neumann, and Sturm-Liouville. Using monotone iterative method coupled with lower and upper solutions method, multifunction analysis, theory of monotone operators, and theory of topological degree, we show existence of solution and extremal solutions when the lower and upper solutions are well ordered or not. Since the boundary value conditions do not include the periodic one, we show that our method stay true for the periodic problem.
DOI : 10.22436/jnsa.017.01.01
Classification : 34B15
Keywords: \( \Phi\)-Laplacian, lower and upper solutions, monotone iterative method, Carathéodory function, maximal monotone multivalued operators, Leray-Schauder's degree, extremal solutions

Béhi, D. A.  1

1 Université de Man, BP 20 Man, Côte d'Ivoire
@article{JNSA_2024_17_1_a0,
     author = {B\'ehi, D. A. },
     title = {A monotone iterative  method for  second order nonlinear problems  with boundary conditions driven by   maximal monotone multivalued operators},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1-18},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2024},
     doi = {10.22436/jnsa.017.01.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.01.01/}
}
TY  - JOUR
AU  - Béhi, D. A. 
TI  - A monotone iterative  method for  second order nonlinear problems  with boundary conditions driven by   maximal monotone multivalued operators
JO  - Journal of nonlinear sciences and its applications
PY  - 2024
SP  - 1
EP  - 18
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.01.01/
DO  - 10.22436/jnsa.017.01.01
LA  - en
ID  - JNSA_2024_17_1_a0
ER  - 
%0 Journal Article
%A Béhi, D. A. 
%T A monotone iterative  method for  second order nonlinear problems  with boundary conditions driven by   maximal monotone multivalued operators
%J Journal of nonlinear sciences and its applications
%D 2024
%P 1-18
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.01.01/
%R 10.22436/jnsa.017.01.01
%G en
%F JNSA_2024_17_1_a0
Béhi, D. A. . A monotone iterative  method for  second order nonlinear problems  with boundary conditions driven by   maximal monotone multivalued operators. Journal of nonlinear sciences and its applications, Tome 17 (2024) no. 1, p. 1-18. doi : 10.22436/jnsa.017.01.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.017.01.01/

[1] Amster, P.; Alzate, P. P. C. An iterative method for a second order problem with nonlinear two-point boundary conditions, Mat. Enseñ. Univ., Volume 19 (2011), pp. 3-14 | Zbl

[2] Bader, R.; Papageorgioua, N. S. Nonlinear Boundary Value Problems for Differential Inclusions, Math. Nachr., Volume 244 (2002), pp. 5-25 | DOI

[3] Behi, D. A.; Adje, A. Existence and Multiplicity Results for Second-Order Nonlinear Differential Equations with Multivalued Boundary Conditions, J. Appl. Math. Phys., Volume 7 (2019), pp. 1340-1368 | DOI

[4] Behi, D. A.; Adje, A.; Goli, K. C. E. Lower and upper solutions method for nonlinear second-order differential equations involving a -Laplacian operator, Afr. Diaspora J. Math., Volume 22 (2019), pp. 22-41

[5] Brézis, H . Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Publishing Co., Amsterdam-London, 1973

[6] Cabada, A.; Habets, P.; Lois, S. Monotone method for the Neumann problem with lower and upper solutions in the reverse order, Appl. Math. Comput., Volume 117 (2001), pp. 1-14 | DOI | Zbl

[7] Cherpion, M.; Coster, C. De; Habets, P. Monotone iterative methods for boundary value, Differential Integral Equations, Volume 12 (1999), pp. 309-338

[8] Deimling, K. Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985 | DOI

[9] Heikkilä, S.; Hu, S. On fixed points of multifunctions in ordered spaces, Appl. Anal., Volume 51 (1993), pp. 115-117 | DOI | Zbl

[10] Papageorgiou, N. S.; Staicu, V. The method of upper-lower solutions for nonlinear second order differential inclusions, Nonlinear Anal., Volume 67 (2007), pp. 708-726 | DOI

[11] Wang, W.; Shen, J.; Nieto, J. J. Periodic boundary value problems for second order functional differential equations, J. Appl. Math. Comput., Volume 36 (2011), pp. 173-186 | DOI

[12] Zeidler, E. Nonlinear functional analysis and its applications, Springer-Verlag, New York, 1990 | DOI

[13] Zhao, J.; Sun, B.; Wang, Y. Existence and iterative solutions of a new kind of Sturm-Liouville-type boundary value problem with one-dimensional p-Laplacian, Bound. Value Probl., Volume 2016 (2016), pp. 1-11 | Zbl | DOI

Cité par Sources :