Voir la notice de l'article provenant de la source International Scientific Research Publications
O'Regan, D. 1
@article{JNSA_2023_16_4_a3, author = {O'Regan, D.}, title = {A note on set valued maps on admissible extension type spaces}, journal = {Journal of nonlinear sciences and its applications}, pages = {233-238}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2023}, doi = {10.22436/jnsa.016.04.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.04.04/} }
TY - JOUR AU - O'Regan, D. TI - A note on set valued maps on admissible extension type spaces JO - Journal of nonlinear sciences and its applications PY - 2023 SP - 233 EP - 238 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.04.04/ DO - 10.22436/jnsa.016.04.04 LA - en ID - JNSA_2023_16_4_a3 ER -
%0 Journal Article %A O'Regan, D. %T A note on set valued maps on admissible extension type spaces %J Journal of nonlinear sciences and its applications %D 2023 %P 233-238 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.04.04/ %R 10.22436/jnsa.016.04.04 %G en %F JNSA_2023_16_4_a3
O'Regan, D. A note on set valued maps on admissible extension type spaces. Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 4, p. 233-238. doi : 10.22436/jnsa.016.04.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.04.04/
[1] Infinite-dimensional analysis, Springer-Verlag, Berlin, 1994 | DOI
[2] The coincidence problem for compositions of set-valued maps, Bull. Austral. Math. Soc., Volume 41 (1990), pp. 421-434 | DOI | Zbl
[3] Spaces and maps approximation and fixed points, J. Comput. Appl. Math., Volume 113 (2000), pp. 283-308 | DOI | Zbl
[4] Fixed-point theorems for multifunctions in S-KKM class, Nonlinear Anal., Volume 44 (2001), pp. 1007-1017 | Zbl | DOI
[5] KKM property and fixed point theorems, J. Math. Anal. Appl., Volume 203 (1996), pp. 224-235 | DOI | Zbl
[6] General Topology, Heldermann Verlag, Berlin, 1989
[7] The Lefschetz fixed point theorem for multi-valued maps of non-metrizable spaces, Fund. Math., Volume 92 (1976), pp. 213-222 | DOI
[8] The Lefschetz fixed point theorem for some classes of non-metrizable spaces, J. Math. Pures Appl. (9), Volume 52 (1973), pp. 271-283 | Zbl
[9] Topological fixed point theory of multivalued mappings, Springer, Dordrecht, 1991 | DOI | Zbl
[10] Fixed Point Theory, Springer-Verlag, New York, 2003
[11] General Topology, Springer-Verlag, Berlin, 1955
[12] Fixed point theory on extension-type spaces and essential maps on topological spaces, Fixed Point Theory Appl., Volume 2004 (2004), pp. 13-20 | Zbl | DOI
[13] Deterministic and random fixed points for maps on extension type spaces, Appl. Anal., Volume 97 (2018), pp. 1960-1966 | Zbl | DOI
[14] Coincidence theory and KKM type maps, submitted
[15] Fixed points for better admissible multifunctions on proximity spaces, J. Math. Anal. Appl., Volume 380 (2011), pp. 882-887 | DOI | Zbl
[16] Fixed point theorems for better admissible multimaps on almost convex sets, J. Math. Anal. Appl., Volume 329 (2007), pp. 690-702 | Zbl | DOI
Cité par Sources :