A note on set valued maps on admissible extension type spaces
Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 4, p. 233-238.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We present a number of fixed point results for general classes of maps defined on a variety of extension type and admissible type spaces.
DOI : 10.22436/jnsa.016.04.04
Classification : 47H10, 54H25
Keywords: Fixed points, set-valued maps

O'Regan, D. 1

1 School of Mathematical and Statistical Sciences, University of Galway, Ireland
@article{JNSA_2023_16_4_a3,
     author = {O'Regan, D.},
     title = {A note on set valued maps on admissible extension type spaces},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {233-238},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2023},
     doi = {10.22436/jnsa.016.04.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.04.04/}
}
TY  - JOUR
AU  - O'Regan, D.
TI  - A note on set valued maps on admissible extension type spaces
JO  - Journal of nonlinear sciences and its applications
PY  - 2023
SP  - 233
EP  - 238
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.04.04/
DO  - 10.22436/jnsa.016.04.04
LA  - en
ID  - JNSA_2023_16_4_a3
ER  - 
%0 Journal Article
%A O'Regan, D.
%T A note on set valued maps on admissible extension type spaces
%J Journal of nonlinear sciences and its applications
%D 2023
%P 233-238
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.04.04/
%R 10.22436/jnsa.016.04.04
%G en
%F JNSA_2023_16_4_a3
O'Regan, D. A note on set valued maps on admissible extension type spaces. Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 4, p. 233-238. doi : 10.22436/jnsa.016.04.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.04.04/

[1] Aliprantis, C. D.; Border, K. C. Infinite-dimensional analysis, Springer-Verlag, Berlin, 1994 | DOI

[2] Ben-El-Mechaiekh, H. The coincidence problem for compositions of set-valued maps, Bull. Austral. Math. Soc., Volume 41 (1990), pp. 421-434 | DOI | Zbl

[3] Ben-El-Mechaiekh, H. Spaces and maps approximation and fixed points, J. Comput. Appl. Math., Volume 113 (2000), pp. 283-308 | DOI | Zbl

[4] Chang, T.-H.; Huang, Y.-Y.; Jeng, J.-C. Fixed-point theorems for multifunctions in S-KKM class, Nonlinear Anal., Volume 44 (2001), pp. 1007-1017 | Zbl | DOI

[5] Chang, T.-H.; Yen, C.-L. KKM property and fixed point theorems, J. Math. Anal. Appl., Volume 203 (1996), pp. 224-235 | DOI | Zbl

[6] Engelking, R. General Topology, Heldermann Verlag, Berlin, 1989

[7] Fournier, G.; G´orniewicz, L. The Lefschetz fixed point theorem for multi-valued maps of non-metrizable spaces, Fund. Math., Volume 92 (1976), pp. 213-222 | DOI

[8] Fournier, G.; Granas, A. The Lefschetz fixed point theorem for some classes of non-metrizable spaces, J. Math. Pures Appl. (9), Volume 52 (1973), pp. 271-283 | Zbl

[9] Gorniewicz, L. Topological fixed point theory of multivalued mappings, Springer, Dordrecht, 1991 | DOI | Zbl

[10] Granas, A.; Dugundji, J. Fixed Point Theory, Springer-Verlag, New York, 2003

[11] Kelley, J. L. General Topology, Springer-Verlag, Berlin, 1955

[12] O’Regan, D. Fixed point theory on extension-type spaces and essential maps on topological spaces, Fixed Point Theory Appl., Volume 2004 (2004), pp. 13-20 | Zbl | DOI

[13] O’Regan, D. Deterministic and random fixed points for maps on extension type spaces, Appl. Anal., Volume 97 (2018), pp. 1960-1966 | Zbl | DOI

[14] O’Regan, D. Coincidence theory and KKM type maps, submitted

[15] O’Regan, D.; Per´an, J. Fixed points for better admissible multifunctions on proximity spaces, J. Math. Anal. Appl., Volume 380 (2011), pp. 882-887 | DOI | Zbl

[16] Park, S. Fixed point theorems for better admissible multimaps on almost convex sets, J. Math. Anal. Appl., Volume 329 (2007), pp. 690-702 | Zbl | DOI

Cité par Sources :