Voir la notice de l'article provenant de la source International Scientific Research Publications
Mulayim, G. 1
@article{JNSA_2023_16_4_a2, author = {Mulayim, G.}, title = {Model order reduction of tumor growth model}, journal = {Journal of nonlinear sciences and its applications}, pages = {222-232}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2023}, doi = {10.22436/jnsa.016.04.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.04.03/} }
TY - JOUR AU - Mulayim, G. TI - Model order reduction of tumor growth model JO - Journal of nonlinear sciences and its applications PY - 2023 SP - 222 EP - 232 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.04.03/ DO - 10.22436/jnsa.016.04.03 LA - en ID - JNSA_2023_16_4_a2 ER -
Mulayim, G. Model order reduction of tumor growth model. Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 4, p. 222-232. doi : 10.22436/jnsa.016.04.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.04.03/
[1] Numerical approximation with Newton polynomial for the solution of a tumor growth model including fractional differential operators, Erzincan Univ. J. Sci. Technol., Volume 14 (2021), pp. 249-259
[2] Crossover behaviors via piecewise concept: A model of tumor growth and its response to radiotherapy, Results Phys., Volume 41 (2022), pp. 1-12 | DOI
[3] Model order reduction for coupled problems (survey), Appl. Comput. Math., Volume 14 (2015), pp. 3-22
[4] Interpolation-based model order reduction for polynomial systems, SIAM J. Sci. Comput., Volume 43 (2021), pp. 1-84 | Zbl | DOI
[5] H2-quasi-optimal model order reduction for quadratic-bilinear control systems, SIAM J. Matrix Anal. Appl., Volume 39 (2018), pp. 983-1032 | DOI | Zbl
[6] The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., Volume 25 (1993), pp. 539-575
[7] On a reaction-cross-diffusion system modeling the growth of glioblastoma, SIAM J. Appl. Math., Volume 80 (2020), pp. 160-182 | Zbl | DOI
[8] Discretization of polynomial vector fields by polarization, Proc. A., Volume 471 (2015), pp. 1-10 | Zbl | DOI
[9] Geometric properties of Kahan’s method, J. Phys. A, Volume 46 (2013), pp. 1-12 | DOI | Zbl
[10] When do cross-diffusion systems have an entropy structure?, J. Differential Equations, Volume 278 (2021), pp. 60-72 | DOI | Zbl
[11] The wave of advance of advantageous genes, Ann. Eugen., Volume 7 (1937), pp. 355-369 | DOI | Zbl
[12] The impact of phenotypic switching on glioblastoma growth and invasion, PLoS Comput. Biol., Volume 8 (2012), pp. 1-12 | DOI
[13] Travelling wave analysis of a mathematical model of glioblastoma growth, Math. Biosci., Volume 276 (2016), pp. 75-81 | DOI | Zbl
[14] Decay of the Kolmogorov N-width for wave problems, Appl. Math. Lett., Volume 96 (2019), pp. 216-222 | DOI | Zbl
[15] The boundedness-by-entropy method for cross-diffusion systems, Nonlinearity, Volume 28 (2015), pp. 1963-2001 | DOI | Zbl
[16] Unconventional numerical methods for trajectory calculations (Unpublished lecture notes), CS Division, Department of EECS, University of California at Berkeley, 1993
[17] Unconventional schemes for a class of ordinary differential equations—with applications to the Korteweg-de Vries equation, J. Comput. Phys., Volume 134 (1997), pp. 316-331 | DOI | Zbl
[18] Reduced order modelling of nonlinear cross-diffusion systems, Appl. Math. Comput., Volume 401 (2021), pp. 1-15 | DOI | Zbl
[19] A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem, in Selected Works of A.N. Kolmogorov: Mathematics and mechanics, V.M. Tikhomirov, ed. Springer (1991), pp. 248-270
[20] Nonlinear model order reduction via lifting transformations and proper orthogonal decomposition, AIAA J., Volume 57 (2019), pp. 2297-2307 | DOI
[21] Galerkin proper orthogonal decomposition methods for parabolic problems, Numer. Math., Volume 90 (2001), pp. 117-148 | Zbl | DOI
[22] MULTIPROD TOOLBOX, multiple matrix multiplications, with array expansion enabled, Tech. Rep., University of Rome Foro Italico, Rome, 2008
[23] Stability effects of finite difference methods on a mathematical tumor growth model, In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops (2010), pp. 125-132 | DOI
[24] Reduced basis methods: Success, limitations and future challenges, In: Proceedings of the Conference Algoritmy (2016), pp. 1-12 | DOI
[25] Turbulence and the dynamics of coherent structures. III. Dynamics and scaling, Quart. Appl. Math., Volume 45 (1987), pp. 583-590 | Zbl | DOI
[26] Comparison of POD reduced order strategies for the nonlinear 2D shallow water equations, Internat. J. Numer. Methods Fluids, Volume 76 (2014), pp. 497-521 | DOI
Cité par Sources :