Model order reduction of tumor growth model
Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 4, p. 222-232.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, reduced order models (ROMs) for the tumor growth model, which is a nonlinear cross-diffusion system are presented. Linear-quadratic ordinary differential equations are obtained by applying the finite difference method to the tumor growth model for spatial discretization. The structure of the ROMs is the same as the structure of the full order model. Proper orthogonal decomposition method with tensorial form is sufficient to compute the reduced solutions efficiently and fast. The results of ROM are presented for one- and two-dimensional cases. Finally, the entropy structure for the reduced solutions, which are in decay form are presented.
DOI : 10.22436/jnsa.016.04.03
Classification : 37N25, 35K57, 35K61, 65M06, 65L05, 34C20
Keywords: Tumor growth model, finite differences, entropy, proper orthogonal decomposition, tensor algebra

Mulayim, G. 1

1 Department of Mathematics, Faculty of Science and Arts, Adiyaman University, Adiyaman, Turkey
@article{JNSA_2023_16_4_a2,
     author = {Mulayim, G.},
     title = {Model order reduction of tumor growth model},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {222-232},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2023},
     doi = {10.22436/jnsa.016.04.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.04.03/}
}
TY  - JOUR
AU  - Mulayim, G.
TI  - Model order reduction of tumor growth model
JO  - Journal of nonlinear sciences and its applications
PY  - 2023
SP  - 222
EP  - 232
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.04.03/
DO  - 10.22436/jnsa.016.04.03
LA  - en
ID  - JNSA_2023_16_4_a2
ER  - 
%0 Journal Article
%A Mulayim, G.
%T Model order reduction of tumor growth model
%J Journal of nonlinear sciences and its applications
%D 2023
%P 222-232
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.04.03/
%R 10.22436/jnsa.016.04.03
%G en
%F JNSA_2023_16_4_a2
Mulayim, G. Model order reduction of tumor growth model. Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 4, p. 222-232. doi : 10.22436/jnsa.016.04.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.04.03/

[1] Araz, S. ˙I. Numerical approximation with Newton polynomial for the solution of a tumor growth model including fractional differential operators, Erzincan Univ. J. Sci. Technol., Volume 14 (2021), pp. 249-259

[2] Arık, ˙I. A.; Araz, S. ˙I. Crossover behaviors via piecewise concept: A model of tumor growth and its response to radiotherapy, Results Phys., Volume 41 (2022), pp. 1-12 | DOI

[3] Benner, P.; Feng, L. Model order reduction for coupled problems (survey), Appl. Comput. Math., Volume 14 (2015), pp. 3-22

[4] Benner, P.; Goyal, P. Interpolation-based model order reduction for polynomial systems, SIAM J. Sci. Comput., Volume 43 (2021), pp. 1-84 | Zbl | DOI

[5] Benner, P.; Goyal, P.; Gugercin, S. H2-quasi-optimal model order reduction for quadratic-bilinear control systems, SIAM J. Matrix Anal. Appl., Volume 39 (2018), pp. 983-1032 | DOI | Zbl

[6] Berkooz, G.; Holmes, P.; Lumley, J. L. The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., Volume 25 (1993), pp. 539-575

[7] Burger, M.; Friele, P.; Pietschmann, J.-F. On a reaction-cross-diffusion system modeling the growth of glioblastoma, SIAM J. Appl. Math., Volume 80 (2020), pp. 160-182 | Zbl | DOI

[8] Celledoni, E.; McLachlan, R. I.; McLaren, D. I.; Owren, B.; Quispel, G. R. W. Discretization of polynomial vector fields by polarization, Proc. A., Volume 471 (2015), pp. 1-10 | Zbl | DOI

[9] Celledoni, E.; McLachlan, R. I.; Owren, B.; Quispel, G. R. W. Geometric properties of Kahan’s method, J. Phys. A, Volume 46 (2013), pp. 1-12 | DOI | Zbl

[10] Chen, X.; ungel, A. J ¨ When do cross-diffusion systems have an entropy structure?, J. Differential Equations, Volume 278 (2021), pp. 60-72 | DOI | Zbl

[11] Fisher, R. A. The wave of advance of advantageous genes, Ann. Eugen., Volume 7 (1937), pp. 355-369 | DOI | Zbl

[12] Gerlee, P.; Nelander, S. The impact of phenotypic switching on glioblastoma growth and invasion, PLoS Comput. Biol., Volume 8 (2012), pp. 1-12 | DOI

[13] Gerlee, P.; Nelander, S. Travelling wave analysis of a mathematical model of glioblastoma growth, Math. Biosci., Volume 276 (2016), pp. 75-81 | DOI | Zbl

[14] Greif, C.; Urban, K. Decay of the Kolmogorov N-width for wave problems, Appl. Math. Lett., Volume 96 (2019), pp. 216-222 | DOI | Zbl

[15] ungel, A. J ¨ The boundedness-by-entropy method for cross-diffusion systems, Nonlinearity, Volume 28 (2015), pp. 1963-2001 | DOI | Zbl

[16] Kahan, W. Unconventional numerical methods for trajectory calculations (Unpublished lecture notes), CS Division, Department of EECS, University of California at Berkeley, 1993

[17] Kahan, W.; Li, R.-C. Unconventional schemes for a class of ordinary differential equations—with applications to the Korteweg-de Vries equation, J. Comput. Phys., Volume 134 (1997), pp. 316-331 | DOI | Zbl

[18] Karas¨ozen, B.; ulayim, G. M¨; Uzunca, M.; Yıldız, S. Reduced order modelling of nonlinear cross-diffusion systems, Appl. Math. Comput., Volume 401 (2021), pp. 1-15 | DOI | Zbl

[19] Kolmogorov, A.; Petrovskii, I.; Piscounov, N. A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem, in Selected Works of A.N. Kolmogorov: Mathematics and mechanics, V.M. Tikhomirov, ed. Springer (1991), pp. 248-270

[20] Kramer, B.; E.Willcox, K. Nonlinear model order reduction via lifting transformations and proper orthogonal decomposition, AIAA J., Volume 57 (2019), pp. 2297-2307 | DOI

[21] Kunisch, K.; Volkwein, S. Galerkin proper orthogonal decomposition methods for parabolic problems, Numer. Math., Volume 90 (2001), pp. 117-148 | Zbl | DOI

[22] Leva, P. D. MULTIPROD TOOLBOX, multiple matrix multiplications, with array expansion enabled, Tech. Rep., University of Rome Foro Italico, Rome, 2008

[23] Mosayebi, P.; Cobzas, D.; Jagersand, M.; Murtha, A. Stability effects of finite difference methods on a mathematical tumor growth model, In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops (2010), pp. 125-132 | DOI

[24] Ohlberger, M.; Rave, S. Reduced basis methods: Success, limitations and future challenges, In: Proceedings of the Conference Algoritmy (2016), pp. 1-12 | DOI

[25] Sirovich, L. Turbulence and the dynamics of coherent structures. III. Dynamics and scaling, Quart. Appl. Math., Volume 45 (1987), pp. 583-590 | Zbl | DOI

[26] S¸tef˘anescu, R.; Sandu, A.; Navon, I. M. Comparison of POD reduced order strategies for the nonlinear 2D shallow water equations, Internat. J. Numer. Methods Fluids, Volume 76 (2014), pp. 497-521 | DOI

Cité par Sources :