Voir la notice de l'article provenant de la source International Scientific Research Publications
May, R. 1
@article{JNSA_2023_16_4_a1, author = {May, R.}, title = {Viscosity approximation method for a variational problem}, journal = {Journal of nonlinear sciences and its applications}, pages = {208-221}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2023}, doi = {10.22436/jnsa.016.04.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.04.02/} }
TY - JOUR AU - May, R. TI - Viscosity approximation method for a variational problem JO - Journal of nonlinear sciences and its applications PY - 2023 SP - 208 EP - 221 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.04.02/ DO - 10.22436/jnsa.016.04.02 LA - en ID - JNSA_2023_16_4_a1 ER -
%0 Journal Article %A May, R. %T Viscosity approximation method for a variational problem %J Journal of nonlinear sciences and its applications %D 2023 %P 208-221 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.04.02/ %R 10.22436/jnsa.016.04.02 %G en %F JNSA_2023_16_4_a1
May, R. Viscosity approximation method for a variational problem. Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 4, p. 208-221. doi : 10.22436/jnsa.016.04.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.04.02/
[1] Convex analysis and monotone operator theory in Hilbert spaces, In: CMS Books in Mathematics/Ouvrages de Math´ematiques de la SMC, Springer, New York, 2011 | DOI | Zbl
[2] Nonlinear programming, J. Oper. Res. Soc., Volume 48 (1997), p. 334-334
[3] Weak and strong convergence theorems for the inclusion problem and the fixed-point problem of nonexpansive mapping, Mathematics, Volume 7 (2019), pp. 1-19 | DOI
[4] Foundations of optimization, Springer, New York, 2010 | DOI
[5] Strong convergence theorems for nonexpansive mapping and inverse-strongly monotone mappings, Nonlinear Anal., Volume 61 (2005), pp. 341-350 | DOI | Zbl
[6] Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl., Volume 241 (2000), pp. 46-55 | Zbl | DOI
[7] Convex optimization in normed spaces: theory, methods and examples, Springer Briefs Optim., Springer, Cham, 2015 | Zbl
[8] Weak convergence theorem for monotone mappings and a countable family of nonexpansive mappings, J. Comput. Appl. Math., Volume 224 (2009), pp. 614-621 | Zbl | DOI
[9] Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., Volume 118 (2003), pp. 417-428 | DOI
[10] Viscosity approximation method for solving variational inequality problem in real Banach spaces, Armen. J. Math., Volume 13 (2021), pp. 1-20 | DOI
[11] Viscosity approximation methods for a general variational inequality system and fixed point problems in Banach spaces, Symmetry, Volume 12 (2020), pp. 1-15 | DOI
[12] Iterative algorithms for nonlinear operators, J. London Math. Soc. (2), Volume 66 (2002), pp. 240-256 | DOI
[13] Averaged mapping and the gradient-projection algorithm, J. Optim. Theory Appl., Volume 150 (2011), pp. 360-378 | Zbl | DOI
[14] Algorithms construction for nonexpansive mappings and inverse-strongly monotone mappings, Taiwanese J. Math., Volume 15 (2011), pp. 1979-1998 | DOI | Zbl
[15] A viscosity approximation methods for solving general system of variational inequalities, generalized mixed equilibrium problems and fixed point problems, Symmetry, Volume 14 (2022), pp. 1-23 | DOI
Cité par Sources :