Voir la notice de l'article provenant de la source International Scientific Research Publications
Hamayun, Y. 1 ; Ullah, N. 1 ; Khan, R. 1 ; Ahmad, Kh. 1 ; Khan, M. Gh. 2 ; Khan, B. 3
@article{JNSA_2023_16_4_a0, author = {Hamayun, Y. and Ullah, N. and Khan, R. and Ahmad, Kh. and Khan, M. Gh. and Khan, B.}, title = {Third {Hankel} determinant for \(q\)-analogue of symmetric starlike connected to \(q\)-exponential function}, journal = {Journal of nonlinear sciences and its applications}, pages = {198-207}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2023}, doi = {10.22436/jnsa.016.04.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.04.01/} }
TY - JOUR AU - Hamayun, Y. AU - Ullah, N. AU - Khan, R. AU - Ahmad, Kh. AU - Khan, M. Gh. AU - Khan, B. TI - Third Hankel determinant for \(q\)-analogue of symmetric starlike connected to \(q\)-exponential function JO - Journal of nonlinear sciences and its applications PY - 2023 SP - 198 EP - 207 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.04.01/ DO - 10.22436/jnsa.016.04.01 LA - en ID - JNSA_2023_16_4_a0 ER -
%0 Journal Article %A Hamayun, Y. %A Ullah, N. %A Khan, R. %A Ahmad, Kh. %A Khan, M. Gh. %A Khan, B. %T Third Hankel determinant for \(q\)-analogue of symmetric starlike connected to \(q\)-exponential function %J Journal of nonlinear sciences and its applications %D 2023 %P 198-207 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.04.01/ %R 10.22436/jnsa.016.04.01 %G en %F JNSA_2023_16_4_a0
Hamayun, Y.; Ullah, N.; Khan, R.; Ahmad, Kh.; Khan, M. Gh.; Khan, B. Third Hankel determinant for \(q\)-analogue of symmetric starlike connected to \(q\)-exponential function. Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 4, p. 198-207. doi : 10.22436/jnsa.016.04.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.04.01/
[1] On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain, AIMS Math., Volume 6 (2021), pp. 3037-3052 | Zbl | DOI
[2] Certain q-difference operators and their applications to the subclass of meromorphic q-starlike functions, Filomat, Volume 33 (2019), pp. 3385-3397 | Zbl
[3] Initial coefficients and fourth Hankel determinant for certain analytic functions, Miskolc Math. Notes, Volume 21 (2020), pp. 763-779 | DOI | Zbl
[4] Univalent Functions, Springer-Verlag, New York, 1983
[5] A subclass of multivalent Janowski type q-starlike functions and its consequences, Symmetry, Volume 13 (2021), pp. 1-14 | DOI
[6] A generalization of starlike functions, Complex Variables Theory Appl., Volume 14 (1990), pp. 77-84 | DOI
[7] On q-definite integrals, Quart. J. Pure Appl. Math., Volume 41 (1910), pp. 193-203 | Zbl
[8] XI.—On q-Functions and a certain Difference Operator, Transac. Royal Soc. Edinburgh, Volume 46 (1909), pp. 253-281 | DOI
[9] Applications of Mittag-Leffler type Poisson distribution to a subclass of analytic functions involving conic-type regions, J. Funct. Spaces, Volume 2021 (2021), pp. 1-9 | DOI
[10] Third Hankel determinant for the logarithmic coefficients of starlike functions associated with sine function, Fractal Fract., Volume 6 (2022), pp. 1-11 | DOI
[11] Zalcman Functional and Majorization Results for Certain Subfamilies of Holomorphic Functions, Axioms, Volume 12 (2023), pp. 1-13 | DOI
[12] Applications of q-derivative operator to the subclass of bi-univalent functions involving q-Chebyshev polynomials, J. Math., Volume 2022 (2022), pp. 1-7 | DOI
[13] Higher-order q-derivatives and their applications to subclasses of multivalent Janowski type q-starlike functions, Adv. Difference Equ., Volume 2021 (2021), pp. 1-15 | DOI | Zbl
[14] A study of some families of multlivalent q-starlike functions involving higher-order q-derivatives, Mathematics, Volume 8 (2020), pp. 1-12 | DOI
[15] Applications of higher-order derivatives to subclasses of multivalent q-starlike functions, Maejo Int. J. Sci. Technol., Volume 15 (2021), pp. 61-72
[16] Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the lemniscate of Bernoulli, J. Math. Inequal., Volume 14 (2020), pp. 53-65 | DOI | Zbl
[17] Early coefficient of the inverse of a regular convex function, Proc. Amer. Math. Soc., Volume 85 (1982), pp. 225-230 | DOI | Zbl
[18] Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., Volume 87 (1983), pp. 251-257 | Zbl | DOI
[19] On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc., Volume 38 (2015), pp. 365-386 | Zbl | DOI
[20] Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roumaine Math. Pures Appl., Volume 28 (1983), pp. 731-739 | Zbl
[21] On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc., Volume 41 (1966), pp. 111-122 | DOI | Zbl
[22] Certain subclasses of starlike and convex function of complex order, Hacet. J. Math. Stat., Volume 34 (2005), pp. 9-15
[23] Upper bound of the third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli, J. Inequal. Appl., Volume 2013 (2013), pp. 1-8 | DOI | Zbl
[24] Certain classes of starlike functions, Michigan Math. J., Volume 32 (1985), pp. 135-140 | DOI | Zbl
[25] Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., Volume 118 (1993), pp. 189-196 | DOI | Zbl
[26] Coefficient estimates for a subclass of meromorphic multivalent q-close-to-convex functions, Symmetry, Volume 13 (2021), pp. 1-12 | DOI
[27] Some geometric properties of a family of analytic functions involving a generalized q-operator, Symmetry, Volume 12 (2020), pp. 1-11 | DOI
[28] Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., Volume 19 (1996), pp. 101-105 | Zbl
[29] Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: Univalent Functions, Fractional Calculus and Their Applications; Srivastava, H.M., Owa, S., Eds.; Ellis Horwood Limited: Chichester, UK (1989), pp. 329-354
[30] Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A Sci., Volume 44 (2020), pp. 327-344 | DOI
[31] Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations, J. Nonlinear Convex Anal., Volume 22 (2021), pp. 1501-1520 | Zbl
[32] Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the q-exponential function, Bull. Sci. Math., Volume 167 (2021), pp. 1-16 | Zbl | DOI
[33] Second Hankel determinants for the class of typically real functions, Abstr. Appl. Anal., Volume 2016 (2016), pp. 1-7 | DOI | Zbl
[34] Applications of q-Hermite polynomials to subclasses of analytic and bi-univalent Functions, Fractal Fract., Volume 6 (2022), pp. 1-15 | DOI
[35] Third-Order Hankel Determinant for Certain Class of Analytic Functions Related with Exponential Function, Symmetry, Volume 10 (2018), pp. 1-8 | DOI
Cité par Sources :