Third Hankel determinant for $q$-analogue of symmetric starlike connected to $q$-exponential function
Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 4, p. 198-207.

Voir la notice de l'article provenant de la source International Scientific Research Publications

By making use of the concept of basic (or $q$-) calculus, a subclass of $q$ -starlike functions with reference to symmetric points, which is associated with the $q$-exponential function, is introduced in the open unit disc. Further, we derived upper bounds for the third-order Hankel determinant for the defined class. For the validity of our results, relevant connections with those in earlier works are also pointed out.
DOI : 10.22436/jnsa.016.04.01
Classification : 30C45, 30C50, 30C80
Keywords: Analytic function, subordination, differential operator, exponential function, Fekete-Szego functional problems

Hamayun, Y. 1 ; Ullah, N. 1 ; Khan, R. 1 ; Ahmad, Kh. 1 ; Khan, M. Gh. 2 ; Khan, B. 3

1 Government Post Graduate College Dargai, Pakistan
2 Institute of Numerical Sciences, Kohat university of science and technology, Kohat, Pakistan
3 School of Mathematical Sciences and Shanghai Key Laboratory of PMMP, East China Normal University, 500 Dongchuan Road, Shanghai 200241, Peoples Republic of China
@article{JNSA_2023_16_4_a0,
     author = {Hamayun, Y. and Ullah, N. and Khan, R. and Ahmad, Kh. and Khan, M. Gh. and Khan, B.},
     title = {Third {Hankel} determinant for \(q\)-analogue of symmetric starlike connected to \(q\)-exponential function},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {198-207},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2023},
     doi = {10.22436/jnsa.016.04.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.04.01/}
}
TY  - JOUR
AU  - Hamayun, Y.
AU  - Ullah, N.
AU  - Khan, R.
AU  - Ahmad, Kh.
AU  - Khan, M. Gh.
AU  - Khan, B.
TI  - Third Hankel determinant for \(q\)-analogue of symmetric starlike connected to \(q\)-exponential function
JO  - Journal of nonlinear sciences and its applications
PY  - 2023
SP  - 198
EP  - 207
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.04.01/
DO  - 10.22436/jnsa.016.04.01
LA  - en
ID  - JNSA_2023_16_4_a0
ER  - 
%0 Journal Article
%A Hamayun, Y.
%A Ullah, N.
%A Khan, R.
%A Ahmad, Kh.
%A Khan, M. Gh.
%A Khan, B.
%T Third Hankel determinant for \(q\)-analogue of symmetric starlike connected to \(q\)-exponential function
%J Journal of nonlinear sciences and its applications
%D 2023
%P 198-207
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.04.01/
%R 10.22436/jnsa.016.04.01
%G en
%F JNSA_2023_16_4_a0
Hamayun, Y.; Ullah, N.; Khan, R.; Ahmad, Kh.; Khan, M. Gh.; Khan, B. Third Hankel determinant for \(q\)-analogue of symmetric starlike connected to \(q\)-exponential function. Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 4, p. 198-207. doi : 10.22436/jnsa.016.04.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.04.01/

[1] Ahmad, B.; Khan, M. G.; Frasin, B. A.; Aouf, M. K.; Abdeljawad, T.; Mashwani, W. K.; Arif, M. On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain, AIMS Math., Volume 6 (2021), pp. 3037-3052 | Zbl | DOI

[2] Ahmad, Q. Z.; Khan, N.; Raza, M.; Tahir, M.; Khan, B. Certain q-difference operators and their applications to the subclass of meromorphic q-starlike functions, Filomat, Volume 33 (2019), pp. 3385-3397 | Zbl

[3] Cho, N. E.; Kumar, V. Initial coefficients and fourth Hankel determinant for certain analytic functions, Miskolc Math. Notes, Volume 21 (2020), pp. 763-779 | DOI | Zbl

[4] Duren, P. L. Univalent Functions, Springer-Verlag, New York, 1983

[5] Hu, Q.; Srivastava, H. M.; Ahmad, B.; Khan, N.; Khan, M. G.; Mashwani, W. K.; Khan, B. A subclass of multivalent Janowski type q-starlike functions and its consequences, Symmetry, Volume 13 (2021), pp. 1-14 | DOI

[6] Ismail, M. E. H.; Merkes, E.; Styer, D. A generalization of starlike functions, Complex Variables Theory Appl., Volume 14 (1990), pp. 77-84 | DOI

[7] Jackson, F. H. On q-definite integrals, Quart. J. Pure Appl. Math., Volume 41 (1910), pp. 193-203 | Zbl

[8] Jackson, F. H. XI.—On q-Functions and a certain Difference Operator, Transac. Royal Soc. Edinburgh, Volume 46 (1909), pp. 253-281 | DOI

[9] Khan, M. G.; Ahmad, B.; Khan, N.; Mashwani, W. K.; Arjika, S.; Khan, B.; Chinram, R. Applications of Mittag-Leffler type Poisson distribution to a subclass of analytic functions involving conic-type regions, J. Funct. Spaces, Volume 2021 (2021), pp. 1-9 | DOI

[10] Khan, B.; Aldawish, I.; Araci, S.; Khan, M. G. Third Hankel determinant for the logarithmic coefficients of starlike functions associated with sine function, Fractal Fract., Volume 6 (2022), pp. 1-11 | DOI

[11] Khan, M. G.; Khan, B.; Tawfiq, F. M. O.; Ro, J.-S. Zalcman Functional and Majorization Results for Certain Subfamilies of Holomorphic Functions, Axioms, Volume 12 (2023), pp. 1-13 | DOI

[12] Khan, B.; Liu, Z.-G.; Shaba, T. G.; Araci, S.; Khan, N.; Khan, M. G. Applications of q-derivative operator to the subclass of bi-univalent functions involving q-Chebyshev polynomials, J. Math., Volume 2022 (2022), pp. 1-7 | DOI

[13] Khan, B.; Liu, Z.-G.; Srivastava, H. M.; Araci, S.; Khan, N.; Ahmad, Q. Z. Higher-order q-derivatives and their applications to subclasses of multivalent Janowski type q-starlike functions, Adv. Difference Equ., Volume 2021 (2021), pp. 1-15 | DOI | Zbl

[14] Khan, B.; Liu, Z.-G.; Srivastava, H. M.; Khan, N.; Darus, M.; Tahir, M. A study of some families of multlivalent q-starlike functions involving higher-order q-derivatives, Mathematics, Volume 8 (2020), pp. 1-12 | DOI

[15] Khan, B.; Liu, Z.-G.; Srivastava, H. M.; Khan, N.; Tahir, M. Applications of higher-order derivatives to subclasses of multivalent q-starlike functions, Maejo Int. J. Sci. Technol., Volume 15 (2021), pp. 61-72

[16] Khan, N.; Shafiq, M.; Darus, M.; Khan, B.; Ahmad, Q. Z. Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the lemniscate of Bernoulli, J. Math. Inequal., Volume 14 (2020), pp. 53-65 | DOI | Zbl

[17] Libera, R. J.; Złotkiewicz, E. J. Early coefficient of the inverse of a regular convex function, Proc. Amer. Math. Soc., Volume 85 (1982), pp. 225-230 | DOI | Zbl

[18] Libera, R. J.; Złotkiewicz, E. J. Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., Volume 87 (1983), pp. 251-257 | Zbl | DOI

[19] Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc., Volume 38 (2015), pp. 365-386 | Zbl | DOI

[20] Noor, K. I. Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roumaine Math. Pures Appl., Volume 28 (1983), pp. 731-739 | Zbl

[21] Pommerenke, Ch. On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc., Volume 41 (1966), pp. 111-122 | DOI | Zbl

[22] Ravichandran, V.; Polatoglu, Y.; Bolcal, M.; Sen, A. Certain subclasses of starlike and convex function of complex order, Hacet. J. Math. Stat., Volume 34 (2005), pp. 9-15

[23] Raza, M.; Malik, S. N. Upper bound of the third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli, J. Inequal. Appl., Volume 2013 (2013), pp. 1-8 | DOI | Zbl

[24] Robertson, M. S. Certain classes of starlike functions, Michigan Math. J., Volume 32 (1985), pp. 135-140 | DOI | Zbl

[25] Rønning, F. Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., Volume 118 (1993), pp. 189-196 | DOI | Zbl

[26] Shi, L.; Ahmad, B.; Khan, N.; Khan, M. G.; Araci, S.; Mashwani, W. K.; Khan, B. Coefficient estimates for a subclass of meromorphic multivalent q-close-to-convex functions, Symmetry, Volume 13 (2021), pp. 1-12 | DOI

[27] Shi, L.; Khan, M. G.; Ahmad, B. Some geometric properties of a family of analytic functions involving a generalized q-operator, Symmetry, Volume 12 (2020), pp. 1-11 | DOI

[28] oł, J. Sok´; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., Volume 19 (1996), pp. 101-105 | Zbl

[29] Srivastava, H. M. Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: Univalent Functions, Fractional Calculus and Their Applications; Srivastava, H.M., Owa, S., Eds.; Ellis Horwood Limited: Chichester, UK (1989), pp. 329-354

[30] Srivastava, H. M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A Sci., Volume 44 (2020), pp. 327-344 | DOI

[31] Srivastava, H. M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations, J. Nonlinear Convex Anal., Volume 22 (2021), pp. 1501-1520 | Zbl

[32] Srivastava, H. M.; Khan, B.; Khan, N.; Tahir, M.; Ahmad, S.; Khan, N. Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the q-exponential function, Bull. Sci. Math., Volume 167 (2021), pp. 1-16 | Zbl | DOI

[33] Zaprawa, P. Second Hankel determinants for the class of typically real functions, Abstr. Appl. Anal., Volume 2016 (2016), pp. 1-7 | DOI | Zbl

[34] Zhang, C.; Khan, B.; Shaba, T. G.; Ro, J.-S.; Araci, S.; Khan, M. G. Applications of q-Hermite polynomials to subclasses of analytic and bi-univalent Functions, Fractal Fract., Volume 6 (2022), pp. 1-15 | DOI

[35] Zhang, H.-Y.; Tang, H.; Niu, X.-M. Third-Order Hankel Determinant for Certain Class of Analytic Functions Related with Exponential Function, Symmetry, Volume 10 (2018), pp. 1-8 | DOI

Cité par Sources :