Voir la notice de l'article provenant de la source International Scientific Research Publications
Khan, B. 1 ; Khan, M. Ghaffar 2 ; Shaba, T. G. 3
@article{JNSA_2023_16_3_a3, author = {Khan, B. and Khan, M. Ghaffar and Shaba, T. G.}, title = {Coefficient estimates for a class of bi-univalent functions involving {Mittag-Leffler} type {Borel} distribution}, journal = {Journal of nonlinear sciences and its applications}, pages = {180-197}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2023}, doi = {10.22436/jnsa.016.03.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.03.04/} }
TY - JOUR AU - Khan, B. AU - Khan, M. Ghaffar AU - Shaba, T. G. TI - Coefficient estimates for a class of bi-univalent functions involving Mittag-Leffler type Borel distribution JO - Journal of nonlinear sciences and its applications PY - 2023 SP - 180 EP - 197 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.03.04/ DO - 10.22436/jnsa.016.03.04 LA - en ID - JNSA_2023_16_3_a3 ER -
%0 Journal Article %A Khan, B. %A Khan, M. Ghaffar %A Shaba, T. G. %T Coefficient estimates for a class of bi-univalent functions involving Mittag-Leffler type Borel distribution %J Journal of nonlinear sciences and its applications %D 2023 %P 180-197 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.03.04/ %R 10.22436/jnsa.016.03.04 %G en %F JNSA_2023_16_3_a3
Khan, B.; Khan, M. Ghaffar; Shaba, T. G. Coefficient estimates for a class of bi-univalent functions involving Mittag-Leffler type Borel distribution. Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 3, p. 180-197. doi : 10.22436/jnsa.016.03.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.03.04/
[1] On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain, AIMS Math., Volume 6 (2021), pp. 3037-3052 | Zbl | DOI
[2] Subclasses of Bi-Univalent Functions Defined by Frasin Differential Operator, Mathematics, Volume 8 (2020), pp. 1-11 | DOI
[3] The Gegenbauer addition theorem, J. Math. Phys., Volume 42 (1963), pp. 147-156 | DOI | Zbl
[4] On the (p, q)-Lucas polynomial coefficient bounds of the bi-univalent function class , Bol. Soc. Mat. Mex. (3), Volume 25 (2019), pp. 567-575 | DOI
[5] The (p, q)-Chebyshev polynomial bounds of a general bi-univalent function class, Bol. Soc. Mat. Mex. (3), Volume 26 (2020), pp. 341-348 | DOI
[6] Gegenbauer polynomials and bi-univalent functions, Palest. J. Math., Volume 10 (2021), pp. 625-632 | Zbl
[7] Some applications of Mittag-Leffler function in the unit disk, Filomat, Volume 30 (2016), pp. 2075-2081 | Zbl | DOI
[8] Certain geometric properties of the Mittag-Leffler functions, Complex Var. Elliptic Equ., Volume 61 (2016), pp. 338-350 | Zbl | DOI
[9] Identities involving values of Bernstein, q-Bernoulli, and q-Euler polynomials, Russ. J. Math. Phys., Volume 18 (2011), pp. 133-143 | DOI | Zbl
[10] Aspects of contemporary complex analysis, Academic Press, London-New York, 1980
[11] On some classes of bi-univalent functions, Studia Univ. Babes¸-Bolyai Math., Volume 31 (1986), pp. 70-77
[12] Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math., Volume 43 (2013), pp. 59-65
[13] Information entropy of Gegenbauer polynomials, J. Phys. A, Volume 33 (2000), pp. 6549-6560 | Zbl | DOI
[14] Bi-Bazilevic functions based on the Mittag-Leffler-type Borel distribution associated with Legendre polynomials, J. Math. Comput. Sci., Volume 24 (2022), pp. 235-245
[15] Second derivative sequences of Fibonacci and Lucas polynomials, Fibonacci Quart., Volume 31 (1993), pp. 194-204 | Zbl
[16] Coefficient bounds for certain classes of bi-univalent functions, Hacet. J. Math. Stat., Volume 43 (2014), pp. 383-389 | Zbl
[17] An application of an operator associated with generalized Mittag-Leffler function, Konuralp J. Math., Volume 7 (2019), pp. 199-202 | Zbl
[18] Some properties of a linear operator involving generalized Mittag-Leffler function, Stud. Univ. Babes¸-Bolyai Math., Volume 65 (2020), pp. 67-75 | DOI | Zbl
[19] New subclasses of bi-univalent functions, Appl. Math. Lett., Volume 24 (2011), pp. 1569-1573 | DOI
[20] Eine Bemerkinkung A˜ berunggerade schlichte Funktionen, J. Lond. Math. Soc., Volume s1-8 (1933), pp. 85-89 | DOI
[21] A Mittag-Leffler-typefunction of two variables, Integral Transforms Spec. Funct., Volume 24 (2013), pp. 934-944 | DOI
[22] A subclass of multivalent Janowski type q-starlike functions and its consequences, Symmetry, Volume 13 (2021), pp. 1-14 | DOI
[23] Applications of Mittag-Leffler type Poisson distribution to a subclass of analytic functions involving conic-type regions, J. Funct. Spaces, Volume 2021 (2021), pp. 1-9 | DOI
[24] Third Hankel determinant for the logarithmic coefficients of starlike functions associated with sine function, Fractal Fract., Volume 6 (2022), pp. 1-11 | DOI
[25] Generalized and mixed type Gegenbauer polynomials, J. Math. Anal. Appl., Volume 390 (2012), pp. 197-207 | Zbl | DOI
[26] Applications of q-derivative operator to the subclass of bi-univalent functions involving q-Chebyshev polynomials, J. Math., Volume 2022 (2022), pp. 1-7 | DOI
[27] A study of some families of multivalent q-starlike functions involving higher-order q-Derivatives, Mathematics, Volume 8 (2020), pp. 1-12 | DOI
[28] Applications of certain conic domains to a subclass of q-starlike functions associated with the Janowski functions, Symmetry, Volume 13 (2021), pp. 1-18 | DOI
[29] Certain class of analytic functions with respect to symmetric points defined by Q-calculus, J. Math., Volume 2021 (2021), pp. 1-9 | Zbl | DOI
[30] Some properties of the (p, q)-Fibonacci and (p, q)-Lucas polynomials, J. Appl. Math., Volume 2012 (2012), pp. 1-18 | DOI
[31] On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., Volume 18 (1967), pp. 63-68 | DOI | Zbl
[32] A guide of Fibonacci and Lucas polynomials, Octogon Math. Mag., Volume 7 (1999), pp. 3-12
[33] Sur la nouvelle fonction E(x), C. R. Acad. Sci. Paris, Volume 137 (1903), pp. 554-558 | Zbl
[34] Second Hankel determinant for a class of analytic functions of the Mittag- Leffler-type Borel distribution related with Legendre polynomials, TWMS J. Appl. Eng. Math., Volume 12 (2022), pp. 1247-1258
[35] The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in z < 1, Arch. Rational Mech. Anal., Volume 32 (1969), pp. 100-112 | DOI | Zbl
[36] Certain classes of analytic functions bound with Kober operators in q-calculus, J. Math., Volume 2021 (2021), pp. 1-8 | Zbl | DOI
[37] The q-difference operator associated with the multivalent function bounded by conical sections, Bol. Soc. Parana. Mat. (3), Volume 39 (2021), pp. 133-146 | Zbl
[38] Information entropy of Gegenbauer polynomials and Gaussian quadrature, J. Phys. A, Volume 36 (2003), pp. 4857-4865 | Zbl | DOI
[39] Fekete-SzegA˜ ¶ Inequalities for New Classes of Analytic Functions Associated with Fractional q-Differintegral Operator, Sci. Technol. Asia, Volume 26 (2021), pp. 160-168
[40] Applications of Gegenbauer (ultraspherical) polynomials in cooling of a heated cylinder, An. Univ. Timis¸oara Ser. S¸ti. Mat., Volume 8 (1970), pp. 207-212
[41] Coefficient estimates for a subclass of meromorphic multivalent q-close-to-convex functions, Symmetry, Volume 13 (2021), pp. 1-12 | DOI
[42] Some geometric properties of a family of analytic functions involving a generalized q-operator, Symmetry, Volume 12 (2020), pp. 1-11 | DOI
[43] The evaluation of an integral involving the product of two Gegenbauer polynomials, SIAM Rev., Volume 9 (1967), pp. 569-572 | DOI | Zbl
[44] Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. Sci., Volume 44 (2020), pp. 327-344 | DOI
[45] Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformatioons, J. Nonlinear Convex Anal., Volume 22 (2021), pp. 1501-1520
[46] Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the q-exponential function, Bull. Sci. Math., Volume 167 (2021), pp. 1-16 | Zbl | DOI
[47] Topics in Univalent Function Theory, Ph.D. Thesis, University of London (1981)
[48] The class of Lucas-Lehmer polynomials, Rend. Mat. Appl. (7), Volume 37 (2016), pp. 43-62 | Zbl
[49] Applications of Borel distribution series on analytic functions, Earthline J. Math. Sci., Volume 4 (2020), pp. 71-82 | DOI
[50] Some identities involving Fibonacci, Lucas polynomials and their applications, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), Volume 55 (2012), pp. 95-103 | Zbl
[51] U¨ ber die Nullstellen der Funktionen E (x), Acta Math., Volume 29 (1905), pp. 217-234 | DOI | Zbl
[52] Applications of q-Hermite polynomials to subclasses of analytic and bi-univalent Functions, Fractal Fract., Volume 6 (2022), pp. 1-15 | DOI
[53] Subordination problems for a new class of Bazileviˇc functions associated with k-symmetric points and fractional q-calculus operators, AIMS Math., Volume 6 (2021), pp. 8642-8653 | Zbl
Cité par Sources :