Coefficient estimates for a class of bi-univalent functions involving Mittag-Leffler type Borel distribution
Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 3, p. 180-197.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In recent years, many new subclasses of analytic and bi-univalent functions have been studied and examined from different viewpoints and prospectives. In this article, we introduce new subclass of analytic and bi-univalent functions based on Mittag-Leffler type Borel distribution associated with the Gegenbauer polynomials. Furthermore we obtain estimates for $\left\vert a_{2}\right\vert ,$ $\left\vert a_{3}\right\vert $, and $\left\vert a_{4}\right\vert $ coefficients and Fekete-Szego inequality for this functions class. Providing specific values to parameters involved in our main results, we get some new results.
DOI : 10.22436/jnsa.016.03.04
Classification : 30C45, 30C50, 30C80
Keywords: Analytic function, bi-univalent function, Gegenbaure polynomials, coefficient estimates, subordination, Fekete-Szego functional problems

Khan, B. 1 ; Khan, M. Ghaffar 2 ; Shaba, T. G. 3

1 School of Mathematical Sciences and Shanghai Key Laboratory of PMMP, East China Normal University, 500 Dongchuan Road, Shanghai 200241, Peoples Republic of China
2 Institute of Numerical Sciences, Kohat University of Science and Technology, Kohat, Pakistan
3 Department of Mathematics, Landmark University, Omu-Aran 251103, Nigeria
@article{JNSA_2023_16_3_a3,
     author = {Khan, B. and Khan, M. Ghaffar and Shaba, T. G.},
     title = {Coefficient estimates for a class of bi-univalent functions involving {Mittag-Leffler} type {Borel} distribution},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {180-197},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2023},
     doi = {10.22436/jnsa.016.03.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.03.04/}
}
TY  - JOUR
AU  - Khan, B.
AU  - Khan, M. Ghaffar
AU  - Shaba, T. G.
TI  - Coefficient estimates for a class of bi-univalent functions involving Mittag-Leffler type Borel distribution
JO  - Journal of nonlinear sciences and its applications
PY  - 2023
SP  - 180
EP  - 197
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.03.04/
DO  - 10.22436/jnsa.016.03.04
LA  - en
ID  - JNSA_2023_16_3_a3
ER  - 
%0 Journal Article
%A Khan, B.
%A Khan, M. Ghaffar
%A Shaba, T. G.
%T Coefficient estimates for a class of bi-univalent functions involving Mittag-Leffler type Borel distribution
%J Journal of nonlinear sciences and its applications
%D 2023
%P 180-197
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.03.04/
%R 10.22436/jnsa.016.03.04
%G en
%F JNSA_2023_16_3_a3
Khan, B.; Khan, M. Ghaffar; Shaba, T. G. Coefficient estimates for a class of bi-univalent functions involving Mittag-Leffler type Borel distribution. Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 3, p. 180-197. doi : 10.22436/jnsa.016.03.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.03.04/

[1] Ahmad, B.; Khan, M. G.; Frasin, B. A.; Aouf, M. K.; Abdeljawad, T.; Mashwani, W. K.; Arif, M. On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain, AIMS Math., Volume 6 (2021), pp. 3037-3052 | Zbl | DOI

[2] Aldawish, I.; Al-Hawary, T.; Frasin, B. A. Subclasses of Bi-Univalent Functions Defined by Frasin Differential Operator, Mathematics, Volume 8 (2020), pp. 1-11 | DOI

[3] Al-Salam, W. A.; Carlitz, L. The Gegenbauer addition theorem, J. Math. Phys., Volume 42 (1963), pp. 147-156 | DOI | Zbl

[4] Altınkaya, S¸.; Yalc¸ın, S. On the (p, q)-Lucas polynomial coefficient bounds of the bi-univalent function class , Bol. Soc. Mat. Mex. (3), Volume 25 (2019), pp. 567-575 | DOI

[5] Altınkaya, S¸.; Yalc¸ın, S. The (p, q)-Chebyshev polynomial bounds of a general bi-univalent function class, Bol. Soc. Mat. Mex. (3), Volume 26 (2020), pp. 341-348 | DOI

[6] Amourah, A.; Alamoush, A.; Al-Kaseasbeh, M. Gegenbauer polynomials and bi-univalent functions, Palest. J. Math., Volume 10 (2021), pp. 625-632 | Zbl

[7] Attiya, A. Some applications of Mittag-Leffler function in the unit disk, Filomat, Volume 30 (2016), pp. 2075-2081 | Zbl | DOI

[8] Bansal, D.; Prajapat, J. K. Certain geometric properties of the Mittag-Leffler functions, Complex Var. Elliptic Equ., Volume 61 (2016), pp. 338-350 | Zbl | DOI

[9] Bayad, A.; Kim, T. Identities involving values of Bernstein, q-Bernoulli, and q-Euler polynomials, Russ. J. Math. Phys., Volume 18 (2011), pp. 133-143 | DOI | Zbl

[10] Brannan, D. A.; Clunie, J. G. Aspects of contemporary complex analysis, Academic Press, London-New York, 1980

[11] Brannan, D. A.; Taha, T. S. On some classes of bi-univalent functions, Studia Univ. Babes¸-Bolyai Math., Volume 31 (1986), pp. 70-77

[12] Bulut, S. Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math., Volume 43 (2013), pp. 59-65

[13] Buyarov, V. S.; L´opez-Art´es, P.; Mart´ınez-Finkelshtein, A.; Assche, W. Van Information entropy of Gegenbauer polynomials, J. Phys. A, Volume 33 (2000), pp. 6549-6560 | Zbl | DOI

[14] El-Deeb, S. M.; Murugusundaramoorthy, G.; Alburaikan, A. Bi-Bazilevic functions based on the Mittag-Leffler-type Borel distribution associated with Legendre polynomials, J. Math. Comput. Sci., Volume 24 (2022), pp. 235-245

[15] Filipponi, P.; Horadam, A. F. Second derivative sequences of Fibonacci and Lucas polynomials, Fibonacci Quart., Volume 31 (1993), pp. 194-204 | Zbl

[16] Frasin, B. A. Coefficient bounds for certain classes of bi-univalent functions, Hacet. J. Math. Stat., Volume 43 (2014), pp. 383-389 | Zbl

[17] Frasin, B. A. An application of an operator associated with generalized Mittag-Leffler function, Konuralp J. Math., Volume 7 (2019), pp. 199-202 | Zbl

[18] Frasin, B. A.; Al-Hawary, T.; Yousef, F. Some properties of a linear operator involving generalized Mittag-Leffler function, Stud. Univ. Babes¸-Bolyai Math., Volume 65 (2020), pp. 67-75 | DOI | Zbl

[19] Frasin, B. A.; Aouf, M. K. New subclasses of bi-univalent functions, Appl. Math. Lett., Volume 24 (2011), pp. 1569-1573 | DOI

[20] Fekete, M.; Szego, G. Eine Bemerkinkung A˜ berunggerade schlichte Funktionen, J. Lond. Math. Soc., Volume s1-8 (1933), pp. 85-89 | DOI

[21] Garg, M.; Manohar, P.; Kalla, S. L. A Mittag-Leffler-typefunction of two variables, Integral Transforms Spec. Funct., Volume 24 (2013), pp. 934-944 | DOI

[22] Hu, Q.; Srivastava, H. M.; Ahmad, B.; Khan, N.; Khan, M. G.; Mashwani, W. K.; Khan, B. A subclass of multivalent Janowski type q-starlike functions and its consequences, Symmetry, Volume 13 (2021), pp. 1-14 | DOI

[23] Khan, M. G.; Ahmad, B.; Khan, N.; Mashwani, W. K.; Arjika, S.; Khan, B.; Chinram, R. Applications of Mittag-Leffler type Poisson distribution to a subclass of analytic functions involving conic-type regions, J. Funct. Spaces, Volume 2021 (2021), pp. 1-9 | DOI

[24] Khan, B.; Aldawish, I.; Araci, S.; Khan, M. G. Third Hankel determinant for the logarithmic coefficients of starlike functions associated with sine function, Fractal Fract., Volume 6 (2022), pp. 1-11 | DOI

[25] Khan, S.; Al-Gonah, A. A.; Yasmin, G. Generalized and mixed type Gegenbauer polynomials, J. Math. Anal. Appl., Volume 390 (2012), pp. 197-207 | Zbl | DOI

[26] Khan, B.; Liu, Z.-G.; Shaba, T. G.; Araci, S.; Khan, N.; Khan, M. G. Applications of q-derivative operator to the subclass of bi-univalent functions involving q-Chebyshev polynomials, J. Math., Volume 2022 (2022), pp. 1-7 | DOI

[27] Khan, B.; Liu, Z.-G.; Srivastava, H. M.; Khan, N.; Darus, M.; Tahir, M. A study of some families of multivalent q-starlike functions involving higher-order q-Derivatives, Mathematics, Volume 8 (2020), pp. 1-12 | DOI

[28] Khan, B.; Srivastava, H. M.; Khan, N.; Darus, M.; Ahmad, Q. Z.; Tahir, M. Applications of certain conic domains to a subclass of q-starlike functions associated with the Janowski functions, Symmetry, Volume 13 (2021), pp. 1-18 | DOI

[29] Karthikeyan, K. R.; Murugusundaramoorthy, G.; Purohit, S. D.; Suthar, D. L. Certain class of analytic functions with respect to symmetric points defined by Q-calculus, J. Math., Volume 2021 (2021), pp. 1-9 | Zbl | DOI

[30] Lee, G. Y.; Asci, M. Some properties of the (p, q)-Fibonacci and (p, q)-Lucas polynomials, J. Appl. Math., Volume 2012 (2012), pp. 1-18 | DOI

[31] Lewin, M. On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., Volume 18 (1967), pp. 63-68 | DOI | Zbl

[32] Lupas, A. A guide of Fibonacci and Lucas polynomials, Octogon Math. Mag., Volume 7 (1999), pp. 3-12

[33] Mittag-Leffler, G. M. Sur la nouvelle fonction E(x), C. R. Acad. Sci. Paris, Volume 137 (1903), pp. 554-558 | Zbl

[34] Murugusundaramoorthy, G.; El-Deeb, S. M. Second Hankel determinant for a class of analytic functions of the Mittag- Leffler-type Borel distribution related with Legendre polynomials, TWMS J. Appl. Eng. Math., Volume 12 (2022), pp. 1247-1258

[35] Netanyahu, E. The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in z < 1, Arch. Rational Mech. Anal., Volume 32 (1969), pp. 100-112 | DOI | Zbl

[36] Purohit, S. D.; Gour, M. M.; Joshi, S.; Suthar, D. L. Certain classes of analytic functions bound with Kober operators in q-calculus, J. Math., Volume 2021 (2021), pp. 1-8 | Zbl | DOI

[37] Ramachandran, C.; Annamalai, S.; Frasin, B. A. The q-difference operator associated with the multivalent function bounded by conical sections, Bol. Soc. Parana. Mat. (3), Volume 39 (2021), pp. 133-146 | Zbl

[38] S´anchez-Ruiz, J. Information entropy of Gegenbauer polynomials and Gaussian quadrature, J. Phys. A, Volume 36 (2003), pp. 4857-4865 | Zbl | DOI

[39] Selvakumaran, K. A.; Gomathi, M.; Purohit, S. D.; Kumar, D. Fekete-SzegA˜ ¶ Inequalities for New Classes of Analytic Functions Associated with Fractional q-Differintegral Operator, Sci. Technol. Asia, Volume 26 (2021), pp. 160-168

[40] Shah, M. Applications of Gegenbauer (ultraspherical) polynomials in cooling of a heated cylinder, An. Univ. Timis¸oara Ser. S¸ti. Mat., Volume 8 (1970), pp. 207-212

[41] Shi, L.; Ahmad, B.; Khan, N.; Khan, M. G.; Araci, S.; Mashwani, W. K.; Khan, B. Coefficient estimates for a subclass of meromorphic multivalent q-close-to-convex functions, Symmetry, Volume 13 (2021), pp. 1-12 | DOI

[42] Shi, L.; Khan, M. G.; Ahmad, B. Some geometric properties of a family of analytic functions involving a generalized q-operator, Symmetry, Volume 12 (2020), pp. 1-11 | DOI

[43] Sneddon, I. N. The evaluation of an integral involving the product of two Gegenbauer polynomials, SIAM Rev., Volume 9 (1967), pp. 569-572 | DOI | Zbl

[44] Srivastava, H. M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. Sci., Volume 44 (2020), pp. 327-344 | DOI

[45] Srivastava, H. M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformatioons, J. Nonlinear Convex Anal., Volume 22 (2021), pp. 1501-1520

[46] Srivastava, H. M.; Khan, B.; Khan, N.; Tahir, M.; Ahmad, S.; Khan, N. Upper bound of the third Hankel determinant for a subclass of q-starlike functions associated with the q-exponential function, Bull. Sci. Math., Volume 167 (2021), pp. 1-16 | Zbl | DOI

[47] Taha, T. S. Topics in Univalent Function Theory, Ph.D. Thesis, University of London (1981)

[48] Vellucci, P.; Bersani, A. M. The class of Lucas-Lehmer polynomials, Rend. Mat. Appl. (7), Volume 37 (2016), pp. 43-62 | Zbl

[49] Wanas, A. K.; Khuttar, J. A. Applications of Borel distribution series on analytic functions, Earthline J. Math. Sci., Volume 4 (2020), pp. 71-82 | DOI

[50] Wang, T.; Zhang, W. Some identities involving Fibonacci, Lucas polynomials and their applications, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), Volume 55 (2012), pp. 95-103 | Zbl

[51] Wiman, A. U¨ ber die Nullstellen der Funktionen E (x), Acta Math., Volume 29 (1905), pp. 217-234 | DOI | Zbl

[52] Zhang, C.; Khan, B.; Shaba, T. G.; Ro, J.-S.; Araci, S.; Khan, M. G. Applications of q-Hermite polynomials to subclasses of analytic and bi-univalent Functions, Fractal Fract., Volume 6 (2022), pp. 1-15 | DOI

[53] Zhou, H.; Selvakumaran, K. A.; Sivasubramanian, S.; Purohit, S. D.; Tang, H. Subordination problems for a new class of Bazileviˇc functions associated with k-symmetric points and fractional q-calculus operators, AIMS Math., Volume 6 (2021), pp. 8642-8653 | Zbl

Cité par Sources :