Voir la notice de l'article provenant de la source International Scientific Research Publications
$ \mathcal{L}^{\alpha}_{\varepsilon,\delta}f(x):=\int_{\mathbb{R}^{d}\backslash \left\lbrace 0\right\rbrace}\bigg[ f\left( x+\varepsilon\sigma\left(\frac{\scriptstyle x}{\scriptstyle \delta},y\right)\right) - f(x) -\varepsilon\sigma^{i}\left(\frac{\scriptstyle x}{\scriptstyle \delta},y\right)\partial_{i}f(x)\boldsymbol{1}_{B} (y)\bigg] \nu_{\varepsilon}^{\alpha}(dy)+\left[ \left(\frac{\scriptstyle \varepsilon}{\scriptstyle \delta}\right)^{\alpha-1}b^{i}_{0}\left(\frac{\scriptstyle x}{\scriptstyle \delta}\right)+b^{i}_{1}\left(\frac{\scriptstyle x}{\scriptstyle \delta}\right) \right] \partial_{i}f(x), $ |
Coulibaly, A. 1
@article{JNSA_2023_16_3_a2, author = {Coulibaly, A.}, title = {Coupling homogenization and large deviations, with applications to nonlocal parabolic partial differential equations}, journal = {Journal of nonlinear sciences and its applications}, pages = {168-179}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2023}, doi = {10.22436/jnsa.016.03.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.03.03/} }
TY - JOUR AU - Coulibaly, A. TI - Coupling homogenization and large deviations, with applications to nonlocal parabolic partial differential equations JO - Journal of nonlinear sciences and its applications PY - 2023 SP - 168 EP - 179 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.03.03/ DO - 10.22436/jnsa.016.03.03 LA - en ID - JNSA_2023_16_3_a2 ER -
%0 Journal Article %A Coulibaly, A. %T Coupling homogenization and large deviations, with applications to nonlocal parabolic partial differential equations %J Journal of nonlinear sciences and its applications %D 2023 %P 168-179 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.03.03/ %R 10.22436/jnsa.016.03.03 %G en %F JNSA_2023_16_3_a2
Coulibaly, A. Coupling homogenization and large deviations, with applications to nonlocal parabolic partial differential equations. Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 3, p. 168-179. doi : 10.22436/jnsa.016.03.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.03.03/
[1] Fluctuations in the homogenization of semilinear equations with random potentials, Comm. Partial Differential Equations, Volume 41 (2016), pp. 1839-1859 | DOI | Zbl
[2] Large deviation for processes with homogenization and applications, Ann. Probab., Volume 19 (1991), pp. 509-524 | Zbl
[3] Backward stochastic differential equations and integral-partial differential equations, Stochastics Stochastics Rep., Volume 60 (1997), pp. 57-83 | Zbl | DOI
[4] Large deviations and stochastic flows of diffeomorphisms, Probab. Theory Related Fields, Volume 80 (1988), pp. 169-215 | Zbl | DOI
[5] Stochastic homogenization of linear elliptic equations: Higher-order error estimates in weak norms via second-order correctors, SIAM J. Math. Anal., Volume 49 (2017), pp. 4658-4703 | DOI | Zbl
[6] Asymptotic analysis for periodic structures, North-Holland Publishing Co., Amsterdam-New York, 1978
[7] Multiscale finite element methods for advection-dominated problems in perforated domains, Multiscale Model. Simul., Volume 17 (2019), pp. 773-825 | Zbl | DOI
[8] Refined criteria toward boundedness in an attraction-repulsion chemotaxis system with nonlinear productions, Appl. Anal. (2023), pp. 1-17
[9] Large Deviations Techniques and Applications, Jones and Bartlett Publishers, Boston, 1993
[10] The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A, Volume 111 (1989), pp. 359-375 | DOI | Zbl
[11] Periodic homogenisation of certain fully nonlinear partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, Volume 120 (1992), pp. 245-265 | Zbl | DOI
[12] A comparison of homogenization and large deviations, with applications to wavefront propagation, Stochastic Process. Appl., Volume 82 (1999), pp. 23-52 | Zbl | DOI
[13] Random perturbations of dynamical systems, Springer-Verlag, New York, 1984
[14] Homogenization of nonlocal partial differential equations related to stochastic differential equations with L´evy noise, Bernoulli, Volume 82 (2022), pp. 1648-1674 | Zbl | DOI
[15] Combining effects ensuring boundedness in an attraction-repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., Volume 74 (2023), pp. 1-21 | DOI | Zbl
[16] Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., Volume 70 (2019), pp. 1-18 | DOI | Zbl
[17] Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime, Differential Integral Equations, Volume 34 (2021), pp. 315-336 | Zbl
[18] Backward stochastic differential equations and quasi-linear parabolic differential equations, Lect. Notes Control. Inf. Sci., Volume 176 (1992), pp. 200-217 | Zbl
[19] Une m´ethode probabiliste pour l’´etude de fronts d’onde dans les ´equations et syst`emes d’´equation de r´eactiondiffusion, Th`ese de doctorat, Univ. Provence. (1999)
Cité par Sources :