Coupling homogenization and large deviations, with applications to nonlocal parabolic partial differential equations
Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 3, p. 168-179.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Consider the following nonlocal integro-differential operator of Lévy-type $\mathcal{L}^{\alpha}_{\varepsilon,\delta}$ given by
$ \mathcal{L}^{\alpha}_{\varepsilon,\delta}f(x):=\int_{\mathbb{R}^{d}\backslash \left\lbrace 0\right\rbrace}\bigg[ f\left( x+\varepsilon\sigma\left(\frac{\scriptstyle x}{\scriptstyle \delta},y\right)\right) - f(x) -\varepsilon\sigma^{i}\left(\frac{\scriptstyle x}{\scriptstyle \delta},y\right)\partial_{i}f(x)\boldsymbol{1}_{B} (y)\bigg] \nu_{\varepsilon}^{\alpha}(dy)+\left[ \left(\frac{\scriptstyle \varepsilon}{\scriptstyle \delta}\right)^{\alpha-1}b^{i}_{0}\left(\frac{\scriptstyle x}{\scriptstyle \delta}\right)+b^{i}_{1}\left(\frac{\scriptstyle x}{\scriptstyle \delta}\right) \right] \partial_{i}f(x), $
related to stochastic differential equations driven by multiplicative isotropic $\alpha$-stable Lévy noise ($1\alpha2$). We study by using homogenization theory the behavior of $u^{\varepsilon,\delta}:\mathbb{R}^{d}\longrightarrow\mathbb{R}$ of double perturbed Kolmogorov, Petrovskii and Piskunov (KPP)-type with periodic coefficients varying over length scale $\delta$ and nonlinear reaction term of scale $1/\varepsilon$, \begin{equation}\label{eq1} \left\lbrace \begin{array}{ll} \frac{\partial u^{\varepsilon,\delta}}{\partial t}(t,x)=\mathcal{L}^{\alpha}_{\varepsilon,\delta}u^{\varepsilon,\delta}(t,x)+\frac{\scriptstyle 1}{\scriptstyle \varepsilon}f\left(\frac{\scriptstyle x}{\scriptstyle \delta},u^{\varepsilon,\delta}(t,x) \right) , x\in\mathbb{R}^{d},\ 0,\\ u^{\varepsilon,\delta}(0,x)=u_{0}(x), \in\mathbb{R}^{d}. \end{array} \right. \end{equation} The behavior is required as $\varepsilon,\delta$ both tend to $0$. Our homogenization method is probabilistic. Since $\delta$ and $\varepsilon$ go at the same rate, we may apply the large deviations principle with homogenized coefficients.
DOI : 10.22436/jnsa.016.03.03
Classification : 60H30, 60H10, 35B27, 35R09
Keywords: Homogenization, large deviations, nonlocal parabolic PDE, SDE with jumps, Feynman-Kac formula

Coulibaly, A. 1

1 Amadou Mahtar Mbow University of Dakar, Dakar, Senegal
@article{JNSA_2023_16_3_a2,
     author = {Coulibaly, A.},
     title = {Coupling homogenization and large deviations, with  applications to nonlocal parabolic partial differential equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {168-179},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2023},
     doi = {10.22436/jnsa.016.03.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.03.03/}
}
TY  - JOUR
AU  - Coulibaly, A.
TI  - Coupling homogenization and large deviations, with  applications to nonlocal parabolic partial differential equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2023
SP  - 168
EP  - 179
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.03.03/
DO  - 10.22436/jnsa.016.03.03
LA  - en
ID  - JNSA_2023_16_3_a2
ER  - 
%0 Journal Article
%A Coulibaly, A.
%T Coupling homogenization and large deviations, with  applications to nonlocal parabolic partial differential equations
%J Journal of nonlinear sciences and its applications
%D 2023
%P 168-179
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.03.03/
%R 10.22436/jnsa.016.03.03
%G en
%F JNSA_2023_16_3_a2
Coulibaly, A. Coupling homogenization and large deviations, with  applications to nonlocal parabolic partial differential equations. Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 3, p. 168-179. doi : 10.22436/jnsa.016.03.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.03.03/

[1] Bal, G.; Jing, W. Fluctuations in the homogenization of semilinear equations with random potentials, Comm. Partial Differential Equations, Volume 41 (2016), pp. 1839-1859 | DOI | Zbl

[2] Baldi, P. Large deviation for processes with homogenization and applications, Ann. Probab., Volume 19 (1991), pp. 509-524 | Zbl

[3] Barles, G.; Buckdahn, R.; Pardoux, E. Backward stochastic differential equations and integral-partial differential equations, Stochastics Stochastics Rep., Volume 60 (1997), pp. 57-83 | Zbl | DOI

[4] Baxendale, P. H.; Stroock, D. W. Large deviations and stochastic flows of diffeomorphisms, Probab. Theory Related Fields, Volume 80 (1988), pp. 169-215 | Zbl | DOI

[5] Bella, P.; Fehrman, B.; Fischer, J.; Otto, F. Stochastic homogenization of linear elliptic equations: Higher-order error estimates in weak norms via second-order correctors, SIAM J. Math. Anal., Volume 49 (2017), pp. 4658-4703 | DOI | Zbl

[6] Bensoussan, A.; Lions, J.-L.; Papanicolaou, G. Asymptotic analysis for periodic structures, North-Holland Publishing Co., Amsterdam-New York, 1978

[7] Bris, C. L.; Legoll, F.; Madiot, F. Multiscale finite element methods for advection-dominated problems in perforated domains, Multiscale Model. Simul., Volume 17 (2019), pp. 773-825 | Zbl | DOI

[8] Columbu, A.; Frassu, S.; Viglialoro, G. Refined criteria toward boundedness in an attraction-repulsion chemotaxis system with nonlinear productions, Appl. Anal. (2023), pp. 1-17

[9] Dembo, A.; Zeitouni, O. Large Deviations Techniques and Applications, Jones and Bartlett Publishers, Boston, 1993

[10] Evans, L. C. The perturbed test function method for viscosity solutions of nonlinear PDE, Proc. Roy. Soc. Edinburgh Sect. A, Volume 111 (1989), pp. 359-375 | DOI | Zbl

[11] Evans, L. C. Periodic homogenisation of certain fully nonlinear partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A, Volume 120 (1992), pp. 245-265 | Zbl | DOI

[12] Freidlin, M. I.; Sowers, R. B. A comparison of homogenization and large deviations, with applications to wavefront propagation, Stochastic Process. Appl., Volume 82 (1999), pp. 23-52 | Zbl | DOI

[13] Freidlin, M. I.; Wentzel, A. D. Random perturbations of dynamical systems, Springer-Verlag, New York, 1984

[14] Huang, Q.; Duan, J.; Song, R. Homogenization of nonlocal partial differential equations related to stochastic differential equations with L´evy noise, Bernoulli, Volume 82 (2022), pp. 1648-1674 | Zbl | DOI

[15] Li, T.; Frassu, S.; Viglialoro, G. Combining effects ensuring boundedness in an attraction-repulsion chemotaxis model with production and consumption, Z. Angew. Math. Phys., Volume 74 (2023), pp. 1-21 | DOI | Zbl

[16] Li, T.; Pintus, N.; Viglialoro, G. Properties of solutions to porous medium problems with different sources and boundary conditions, Z. Angew. Math. Phys., Volume 70 (2019), pp. 1-18 | DOI | Zbl

[17] Li, T.; Viglialoro, G. Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime, Differential Integral Equations, Volume 34 (2021), pp. 315-336 | Zbl

[18] Pardoux, ´ E.; Peng, S. Backward stochastic differential equations and quasi-linear parabolic differential equations, Lect. Notes Control. Inf. Sci., Volume 176 (1992), pp. 200-217 | Zbl

[19] Pradeilles, F. Une m´ethode probabiliste pour l’´etude de fronts d’onde dans les ´equations et syst`emes d’´equation de r´eactiondiffusion, Th`ese de doctorat, Univ. Provence. (1999)

Cité par Sources :