Dynamic behaviour of a single-species nonlinear fishery model with infection: the role of fishing tax and time-dependent market price
Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 3, p. 145-167.

Voir la notice de l'article provenant de la source International Scientific Research Publications

Taxation policy for fishing received global consent to protect fisheries from drastic harvesting. Still, it should be applied sustainably for a greater ecological and economic benefit because over-taxation may impair fishers' earnings and reduce the overall societal revenue. The fish disease may alter the system dynamics and reduce the revenue generation from the fishery. This paper proposes a nonlinear bioeconomic harvesting model of a single-species fishery with infection, variable market price, and nonlinear demand to explore taxation's ecological and economic effects. We provide the stability results of the system's different ecological and economic equilibrium points. The analytical conditions for the existence of transcritical bifurcation are also established. The computational results show that the system exhibits three dynamical regimes depending on the fishing tax. Taxation might control intensive harvesting but augment disease spreading and price hiking. Higher regulatory tax may even cause a regime shift, where the system enters into a non-harvesting regime from the harvesting one, causing an ecological and economic imbalance. Using Pontryagin's maximum principle, we decipher that some optimal fishing tax exists for the maximum societal benefit in a disease-induced fishery.
DOI : 10.22436/jnsa.016.03.02
Classification : 92D40, 92D25, 34C23
Keywords: Bioeconomic model, variable market price, quadratic demand function, local stability, bifurcation, optimal tax

Sarkar, B. 1 ; Bhattacharya, S. 2 ; Bairagi, N. 2

1 Department of Industrial Engineering, Yonsei University, Seoul 03722, South Korea
2 Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India
@article{JNSA_2023_16_3_a1,
     author = {Sarkar, B. and Bhattacharya, S. and Bairagi, N.},
     title = {Dynamic behaviour of a single-species nonlinear fishery model with infection: the role of fishing tax and time-dependent market price},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {145-167},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2023},
     doi = {10.22436/jnsa.016.03.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.03.02/}
}
TY  - JOUR
AU  - Sarkar, B.
AU  - Bhattacharya, S.
AU  - Bairagi, N.
TI  - Dynamic behaviour of a single-species nonlinear fishery model with infection: the role of fishing tax and time-dependent market price
JO  - Journal of nonlinear sciences and its applications
PY  - 2023
SP  - 145
EP  - 167
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.03.02/
DO  - 10.22436/jnsa.016.03.02
LA  - en
ID  - JNSA_2023_16_3_a1
ER  - 
%0 Journal Article
%A Sarkar, B.
%A Bhattacharya, S.
%A Bairagi, N.
%T Dynamic behaviour of a single-species nonlinear fishery model with infection: the role of fishing tax and time-dependent market price
%J Journal of nonlinear sciences and its applications
%D 2023
%P 145-167
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.03.02/
%R 10.22436/jnsa.016.03.02
%G en
%F JNSA_2023_16_3_a1
Sarkar, B.; Bhattacharya, S.; Bairagi, N. Dynamic behaviour of a single-species nonlinear fishery model with infection: the role of fishing tax and time-dependent market price. Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 3, p. 145-167. doi : 10.22436/jnsa.016.03.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.03.02/

[1] Agmour, I.; Bentounsi, M.; Achtaich, N.; Foutayeni, Y. El Catchability coefficient influence on the fishermen’s net economic revenues, Commun. Math. Biol. Neurosci., Volume 2018 (2018), pp. 1-16

[2] Anderson, R. M.; May, R. M. Infectious diseases of humans: dynamics and control, Oxford University Press, New York, 1992

[3] Ang, T. K.; Safuan, H. M. Harvesting in a toxicated intraguild predator–prey fishery model with variable carrying capacity, Chaos Solitons Fractals, Volume 126 (2019), pp. 158-168 | DOI | Zbl

[4] Arkoosh, M. R.; Casillas, E.; Clemons, E.; Kagley, A. N.; Olson, R.; Reno, P.; Stein, J. E. Effect of pollution on fish diseases: potential impacts on salmonid populations, J. Aquat. Anim. Health, Volume 10 (1998), pp. 182-190 | DOI

[5] Auger, P.; Mchich, R.; Ra¨ıssi, N.; Kooi, B. W. Effects of market price on the dynamics of a spatial fishery model: Overexploited fishery/traditional fishery, Ecol. Complex., Volume 7 (2010), pp. 13-20 | DOI

[6] Azar, C.; Holmberg, J.; Lindgren, K. Stability analysis of harvesting in a predator-prey model, J. Theor. Biol., Volume 174 (1995), pp. 13-19 | DOI

[7] Bairagi, N.; Bhattacharya, S.; Auger, P.; Sarkar, B. Bioeconomics fishery model in presence of infection: sustainability and demand-price perspectives, Appl. Math. Comput., Volume 405 (2021), pp. 1-20 | DOI | Zbl

[8] Bairagi, N.; Bhattacharya, S.; Sarkar, B. Demand-induced regime shift in fishery: A mathematical perspective, Math. Biosci., Volume 361 (2023), pp. 1-14 | DOI | Zbl

[9] Barman, A.; Das, R.; De, P. K. Optimal pricing, replenishment scheduling, and preservation technology investment policy for multi-item deteriorating inventory model under shortages, Int. J. Model. Simul. Sci. Comput., Volume 12 (2021) | DOI

[10] Ben-Daya, M.; As’Ad, R.; Seliaman, M. An integrated production inventory model with raw material replenishment considerations in a three layer supply chain, Int. J. Prod. Econ., Volume 143 (2013), pp. 53-61 | DOI

[11] Birkhoff, G.; Rota, G.-C Ordinary differential equations, John Wiley & Sons, New York-Chichester-Brisbane, 1978

[12] Birner, R. Bioeconomy concepts, In: Bioeconomy, Springer, Cham (2018), pp. 17-38 | DOI

[13] Bischi, G.-I.; Lamantia, F.; Radi, D. A prey–predator fishery model with endogenous switching of harvesting strategy, Appl. Math. Comput., Volume 219 (2013), pp. 10123-10142 | DOI | Zbl

[14] Brites, N. M.; Braumann, C. A. Fisheries management in random environments: Comparison of harvesting policies for the logistic model, Fish. Res., Volume 195 (2017), pp. 238-246 | DOI

[15] Chakraborty, S.; Pal, S.; Bairagi, N. Dynamics of a ratio-dependent eco-epidemiological system with prey harvesting, Nonlinear Anal. Real World Appl., Volume 11 (2010), pp. 1862-1877 | DOI | Zbl

[16] Chakraborty, S.; Pal, S.; Bairagi, N. Management and analysis of predator-prey fishery model, Nonlinear Stud., Volume 19 (2012), pp. 179-198 | Zbl

[17] Chakraborty, S.; Pal, S.; Bairagi, N. Predator–prey interaction with harvesting: mathematical study with biological ramifications, Appl. Math. Model., Volume 36 (2012), pp. 4044-4059 | Zbl | DOI

[18] Chassot, E.; Bonhommeau, S.; Dulvy, N. K.; M´elin, F.; Watson, R.; Gascuel, D.; Pape, O. Le Global marine primary production constrains fisheries catches, Ecol. Lett., Volume 13 (2010), pp. 495-505

[19] Cheung, W.; Sumaila, U. Trade-offs between conservation and socio-economic objectives in managing a tropical marine ecosystem, Ecol. Econ., Volume 66 (2008), pp. 193-210

[20] Cheung, W.W.; Pitcher, T. J. Designing fisheries management policies that conserve marine species diversity in the northern south china sea, Fisheries Assessment and Management in Data-limited Situations, Alaska Sea Grant College Program, University of Alaska Fairbanks, Alaska (2006), pp. 439-466

[21] Christie, P. Marine protected areas as biological successes and social failures in Southeast Asia, In: Am. Fish. Soc. Symp., Volume 42 (2004), pp. 155-164

[22] Conrad, J. M.; Rondeau, D. Bioeconomics of a marine disease, Mar. Resour. Econ., Volume 30 (2015), pp. 393-416

[23] Diekmann, O.; Heesterbeek, J. A. P.; Metz, J. A. J. On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations, J. Math. Biol., Volume 28 (1990), pp. 365-382 | DOI | Zbl

[24] Dietzm, K. The estimation of the basic reproduction number for infectious diseases, Stat. Methods Med. Res., Volume 2 (1993), pp. 23-41 | DOI

[25] Domenici, P.; Steffensen, J. F.; Marras, S. The effect of hypoxia on fish schooling, Phil. Trans. R. Soc. B, Volume 372 (2017), pp. 1-13 | DOI

[26] Dubey, B.; Chandra, P.; Sinha, P. A resource dependent fishery model with optimal harvesting policy, J. Biol. Syst., Volume 10 (2002), pp. 1-13 | DOI | Zbl

[27] FAO The State of World Fisheries and Aquaculture, 1998 Food and Agriculture Organization of the United Nations, Italy, 1998

[28] FAO The state of world fisheries and aquaculture, 2020 Sustainability in action, Food and Agriculture Organization of the United Nations, Italy, 2020

[29] Fisheries, R. Code of Conduct for Responsible Fisheries, FAO. Rome, Italy (1995), pp. 1-41

[30] Froese, R.; Winker, H.; Gascuel, D.; Sumaila, U. R.; Pauly, D. Minimizing the impact of fishing, Fish Fish., Volume 17 (2016), pp. 785-802 | DOI

[31] General, A. United nations transforming our world: The 2030 agenda for sustainable development, Division for Sustainable Development Goals: New York, NY, USA (2015)

[32] Ghosh, B.; Kar, T. K. Sustainable use of prey species in a prey–predator system: Jointly determined ecological thresholds and economic trade-offs, Ecol. Model., Volume 272 (2014), pp. 49-58 | DOI

[33] Gozlan, R. E.; St-Hilaire, S.; Feist, S. W.; Martin, P.; Kent, M. L. Disease threat to european fish, Nature, Volume 435 (2005), p. 1046-1046 | DOI

[34] Gunnlaugsson, S. B.; Kristofersson, D.; Agnarsson, S. Fishing for a fee: Resource rent taxation in iceland’s fisheries, Ocean Coast. Manag., Volume 163 (2018), pp. 141-150 | DOI

[35] Hale, J. K. Functional differential equations, In: Analytic theory of differential equations, Lecture Notes in Math., Springer, Berlin, Volume 183 (1971), pp. 9-22

[36] Hanson, F. B.; Ryan, D. Optimal harvesting with both population and price dynamics, Math. Biosci., Volume 148 (1998), pp. 129-146 | Zbl

[37] Harvell, C.; Mitchell, C.; Ward, J.; Altizer, S.; Dobson, A.; Ostfeld, R.; Samuel, M. Climate warming and disease risks for terrestrial and marine biota, Science, Volume 296 (2002), pp. 2158-2162 | DOI

[38] Hu, D.; Cao, H. Stability and bifurcation analysis in a predator-prey system with Michaelis-Menten type predator harvesting, Nonlinear Anal. Real World Appl., Volume 33 (2017), pp. 58-82 | DOI | Zbl

[39] Huang, L.; Cai, D.; Liu, W. Optimal tax policy of a one-predator–two-prey system with a marine protected area, Math. Methods Appl. Sci., Volume 44 (2021), pp. 6876-6895 | Zbl | DOI

[40] Hurwitz, A. On the conditions under which an equation has only roots with negative real parts, Sel. Pap. Math. Trends Control Theory, Volume 65 (1964), pp. 273-284

[41] Hutchings, J. A. Collapse and recovery of marine fishes, Nature, Volume 406 (2000), pp. 882-885 | DOI

[42] Ji, L.; Wu, C. Qualitative analysis of a predator–prey model with constant-rate prey harvesting incorporating a constant prey refuge, Nonlinear Anal. Real World Appl., Volume 11 (2010), pp. 2285-2295 | Zbl | DOI

[43] Juneja, N.; Agnihotri, K. Conservation of a predator species in SIS prey-predator system using optimal taxation policy, Chaos Solitons Fractals, Volume 116 (2018), pp. 86-94 | Zbl | DOI

[44] Kar, T. K.; Chattopadhyay, S. K.; Pati, C. Kr. A bio-economic model of two-prey one-predator system, J. Appl. Math. Inform., Volume 27 (2009), pp. 1411-1427

[45] Kar, T. K. Conservation of a fishery through optimal taxation: a dynamic reaction model, Commun. Nonlinear Sci. Numer. Simul., Volume 10 (2005), pp. 121-131 | DOI | Zbl

[46] Khan, R. A.; Thulin, J. Influence of pollution on parasites of aquatic animals, Adv. Parasitol., Volume 30 (1991), pp. 201-238 | DOI

[47] Ma, T.; Meng, X.; Hayat, T.; Hobiny, A. Stability analysis and optimal harvesting control of a cross-diffusion prey-predator system, Chaos Solitons Fractals, Volume 152 (2021), pp. 1-15 | DOI | Zbl

[48] Magill, M. J. P.; Scheinkman, J. A. Stability of regular equilibria and the correspondence principle for symmetric variational problems, Internat. Econom. Rev., Volume 20 (1979), pp. 297-315 | DOI | Zbl

[49] Mansal, F.; Nguyen-Huu, T.; Auger, P.; Balde, M. A mathematical model of a fishery with variable market price: sustainable fishery/over-exploitation, Acta Biotheor., Volume 62 (2014), pp. 305-323

[50] Mascia, M. B.; Claus, C. A.; Naidoo, R. Impacts of marine protected areas on fishing communities, Conserv. Biol., Volume 24 (2010), pp. 1424-1429 | DOI

[51] Mohammed, E. Y.; Steinbach, D.; Steele, P. Fiscal reforms for sustainable marine fisheries governance: Delivering the sdgs and ensuring no one is left behind, Mar. Policy, Volume 93 (2018), pp. 262-270 | DOI

[52] Mondal, C.; Adak, D.; Bairagi, N. Optimal control in a multi-pathways HIV-1 infection model: a comparison between mono-drug and multi-drug therapies, Internat. J. Control, Volume 94 (2021), pp. 2047-2064 | DOI | Zbl

[53] Moussaoui, A.; Auger, P. A bioeconomic model of a fishery with saturated catch and variable price: Stabilizing effect of marine reserves on fishery dynamics, Ecol. Complex., Volume 45 (2021), pp. 1-13 | DOI

[54] Moussaoui, A.; Bensenane, M.; Auger, P.; Bah, A. On the optimal size and number of reserves in a multi-site fishery model, J. Biol. Syst., Volume 23 (2015), pp. 31-47 | Zbl | DOI

[55] Nath, B.; Roy, P.; Das, K. P. Dynamics of nutrient-phytoplankton-zooplankton interaction in the presence of viral infection, Nonlinear Stud., Volume 26 (2019), pp. 197-217 | Zbl

[56] Obasohan, E. E.; Agbonlahor, D. E.; Obano, E. E. Water pollution: A review of microbial quality and health concerns of water, sediment and fish in the aquatic ecosystem, Afr. J. Biotechnol., Volume 9 (2010), pp. 423-427

[57] Pahari, U. K.; Kar, T. K. Conservation of a resource based fishery through optimal taxation, Nonlinear Dynam., Volume 72 (2013), pp. 591-603 | DOI | Zbl

[58] Panayotova, I. N.; Brucal-Hallare, M. Modeling ecological issues in fish dynamics: Competing predators, invasiveness, and over-harvesting, Ecol. Model., Volume 466 (2022) | DOI

[59] Peeler, E. J.; Taylor, N. G. H. The application of epidemiology in aquatic animal health-opportunities and challenges, Vet. Res., Volume 42 (2011), pp. 1-15 | DOI

[60] Perko, L. Differential equations and dynamical systems, Springer-Verlag, New York, 2001 | Zbl | DOI

[61] Petaratip, T.; Bunwong, K.; Moore, E.; Suwandechochai, R. Sustainable harvesting policies for a fishery model including spawning periods and taxation, Int. J. Math. Models Methods Appl. Sci., Volume 6 (2012), pp. 411-418

[62] Peterman, M. A.; Posadas, B. C. Direct economic impact of fish diseases on the east mississippi catfish industry, N. Am. J. Aquac., Volume 81 (2019), pp. 222-229

[63] Pontryagin, L.; Boltyanskii, V.; Gamkrelidze, R.; Mishchenko, E. The maximum principle, The mathematical theory of optimal processes, John Wiley and Sons, New York, 1962

[64] Pujaru, K.; Kar, T. K.; Paul, P. Relationship between multiple ecosystem services and sustainability in three species food chain, Ecol. Inform., Volume 62 (2021), pp. 1-14 | DOI

[65] Rameshkumar, G.; Ravichandran, S. Problems caused by isopod parasites in commercial fishes, J. Parasit. Dis., Volume 38 (2014), pp. 138-141 | DOI

[66] Raymond, C.; Hugo, A.; Kung’aro, M. Modeling dynamics of prey-predator fishery model with harvesting: A bioeconomic model, J. Appl. Math., Volume 2019 (2019), pp. 1-13 | Zbl | DOI

[67] Rosa, R.; Costa, T.; Mota, R. P. Incorporating economics into fishery policies: Developing integrated ecological-economics harvest control rules, Ecol. Econ., Volume 196 (2022) | DOI

[68] Rosenman, R. The optimal tax for maximum economic yield: Fishery regulation under rational expectations, J. Environ. Econ. Manag., Volume 13 (1986), pp. 348-362 | DOI

[69] Saner, R.; Yiu, L.; Kingombe, C. The 2030 Agenda compared with six related international agreements: valuable resources for SDG implementation, Sustain. Sci., Volume 14 (2019), pp. 1685-1716 | DOI

[70] Shinn, A.; Pratoomyot, J.; Griffiths, D.; Trong, T.; Vu, N. T.; Jiravanichpaisal, P.; Briggs, M. Asian shrimp production and the economic costs of disease, Asian Fish. Sci., Volume 31 (2018), pp. 29-58

[71] Stankus, A. State of world aquaculture 2020 and regional reviews: Fao webinar series, FAO Aquaculture Newsletter, Volume 63 (2021), pp. 17-18

[72] Sumaila, U. R. Seas, oceans and fisheries: A challenge for good governance, The Round Table, Volume 101 (2012), pp. 157-166

[73] Tavares-Dias, M.; Martins, M. L. An overall estimation of losses caused by diseases in the brazilian fish farms, J. Parasit. Dis., Volume 41 (2017), pp. 913-918 | DOI

[74] Walker, P. J.; Winton, J. R. Emerging viral diseases of fish and shrimp, Vet. Res., Volume 41 (2010), pp. 1-24 | DOI

[75] Worm, B.; Barbier, E. B.; Beaumont, N.; Duffy, J. E.; Folke, C.; Halpern, B. S.; Jackson, J. B.; Lotze, H. K.; Micheli, F.; Palumbi, S. R.; Sala, E. Impacts of biodiversity loss on ocean ecosystem services, Science, Volume 314 (2006), pp. 787-790 | DOI

[76] Xiao, D.; Li, W.; Han, M. Dynamics in a ratio-dependent predator–prey model with predator harvesting, J. Math. Anal. Appl., Volume 324 (2006), pp. 14-29 | Zbl | DOI

Cité par Sources :