Voir la notice de l'article provenant de la source International Scientific Research Publications
Jean-Marc, B. G.  1 ; Joresse, Y. S. A.  2 ; Augustin, T. K. 3
@article{JNSA_2023_16_3_a0, author = {Jean-Marc, B. G. and Joresse, Y. S. A. and Augustin, T. K.}, title = {Numerical approximation of the dissipativity of energy and spectrum for a damped {Euler-Bernoulli} beam with variable coefficients}, journal = {Journal of nonlinear sciences and its applications}, pages = {123-144}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2023}, doi = {10.22436/jnsa.016.03.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.03.01/} }
TY - JOUR AU - Jean-Marc, B. G. AU - Joresse, Y. S. A. AU - Augustin, T. K. TI - Numerical approximation of the dissipativity of energy and spectrum for a damped Euler-Bernoulli beam with variable coefficients JO - Journal of nonlinear sciences and its applications PY - 2023 SP - 123 EP - 144 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.03.01/ DO - 10.22436/jnsa.016.03.01 LA - en ID - JNSA_2023_16_3_a0 ER -
%0 Journal Article %A Jean-Marc, B. G. %A Joresse, Y. S. A. %A Augustin, T. K. %T Numerical approximation of the dissipativity of energy and spectrum for a damped Euler-Bernoulli beam with variable coefficients %J Journal of nonlinear sciences and its applications %D 2023 %P 123-144 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.03.01/ %R 10.22436/jnsa.016.03.01 %G en %F JNSA_2023_16_3_a0
Jean-Marc, B. G. ; Joresse, Y. S. A. ; Augustin, T. K. Numerical approximation of the dissipativity of energy and spectrum for a damped Euler-Bernoulli beam with variable coefficients. Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 3, p. 123-144. doi : 10.22436/jnsa.016.03.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.03.01/
[1] Computational methods for the identification of spatially varying stiffness and damping in beams, Control Theory Adv. Tech., Volume 3 (1987), pp. 1-32
[2] A study of exponential stability for a flexible Euler-Bernoulli beam with variable coefficients under a force control in rotation and velocity rotation, Glob. J. Pure Appl. Math., Volume 13 (2017), pp. 6991-7008
[3] Stabilization of variable coefficients Euler-Bernoulli beam with viscous damping under a force control in rotation and velocity rotation, J. Math. Res., Volume 9 (2017), pp. 1-13
[4] The mathematical theory of finite element methods, Springer, New York, 2008 | DOI
[5] Finite element Galerkin solutions for the strongly damped extensible beam equations, Korean J. Comput. Appl. Math., Volume 9 (2002), pp. 27-43 | DOI | Zbl
[6] The Finite Element Method for Elliptic problems, North-Holland Publishing Co., Amsterdam-New York- Oxford, 1978
[7] Matrix computations, Johns Hopkins University Press, Baltimore, MD, 1989
[8] Numerical approximation of spectrum for variable coefficients Euler-Bernoulli beams under a force control in position and velocity, Int. J. Appl. Math., Volume 30 (2017), pp. 211-228 | DOI
[9] An algorithm for generalized matrix eigenvalue problems, SIAM J. Numer. Anal., Volume 10 (1973), pp. 241-256 | DOI
[10] Numerical approximation of the spectrum for a hyperbolic equation with boundary condition, Far East J. Appl. Math., Volume 60 (2011), pp. 41-53 | Zbl
[11] Boundary regularity of minimizers of p(x)-energy functionals, Ann. Inst. H. Poincar´e C Anal. Non Lin´eaire., Volume 33 (2016), pp. 451-476 | Zbl | DOI
[12] Introduction `a l’analyse num´erique, Presses Polytechniques et Universitaires Romandes, Lausanne, 1998 | Zbl
[13] Regularity of solutions to elliptic equations on Herz spaces with variable exponents, Bound. Value Probl., Volume 2019 (2019), pp. 1-9 | DOI | Zbl
[14] An analysis of the finite element method, Prentice-Hall, Inc., Englewood Cliffs, N.J., Volume 1973 (1973), pp. 1-154
[15] Riesz basis and exponential stability for Euler-Bernoulli beams with variable coefficients and indefinite damping under a force control in position and velocity, Electron. J. Differ. Equ., Volume 2015 (2015), pp. 1-20 | Zbl
[16] A Hermite cubic immersed finite element space for beam design problems, Thesis, Blacksburg, Virginia (2015)
[17] Riesz basis property, exponential stability of variable coefficient Euler-Bernoulli beams with indefinite damping, IMA J. Appl. Math., Volume 70 (2005), pp. 459-477 | Zbl | DOI
Cité par Sources :