Effect of an amplitude modulated force on vibrational resonance, chaos, and multistability in a modified Van der Pol-Duffing oscillator
Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 2, p. 111-122.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper deals with the effects of an amplitude modulated (AM) excitation on the nonlinear dynamics of reactions between four molecules. The computation of the fixed points of the autonomous nonlinear chemical system has been made in detail using Cardan's method. Routes to chaos have been investigated through bifurcations structures, Lyapunov exponent and phase portraits. The effects of the control force on chaotic motions have been strongly analyzed and the control efficiency is found in the cases $g=0$ (unmodulated case), $g\neq 0$ with $\Omega=n\omega$; $n$ a natural number and $\frac{\Omega}{\omega}\neq\frac{p}{q}$; $p$ and $q$ are simple positive integers. Vibrational Resonance (VR), hysteresis and coexistence of several attractors have been studied in details based on the relationship between the frequencies of the AM force. Results of analytical investigations are validated and complemented by numerical simulations.
DOI : 10.22436/jnsa.016.02.04
Classification : 34H10, 92E20, 37N99, 34C28
Keywords: Modified Van der Pol oscillator, Cardan's method, chaos, coexisting attractors, vibrational resonance

Miwadinou, C. H.  1 ; Hinvi, L. A.  2 ; Ainamon, C.  3 ; Monwanou, A. V.  3

1 Laboratoire de Mecanique des Fluides, de la Dynamique Nonlineaire et de la Modelisation des Systemes Biologiques (LMFDNMSB), Institut de Mathematiques et de Sciences Physiques, Porto-Novo, Benin;Departement de Physique, ENS-Natitingou, Universite Nationale des Sciences, Technologies, Ingenierie et Mathematiques (UNSTIM), Abomey, Benin
2 Laboratoire de Mecanique des Fluides, de la Dynamique Nonlineaire et de la Modelisation des Systemes Biologiques (LMFDNMSB), Institut de Mathematiques et de Sciences Physiques, Porto-Novo, Benin;Departement de Genie Mecanique et Productique GMP, INSTI-Lokossa, Universite Nationale des Sciences, Technologies, Ingenierie et Mathematiques (UNSTIM), Abomey, Benin
3 Laboratoire de Mecanique des Fluides, de la Dynamique Nonlineaire et de la Modelisation des Systemes Biologiques (LMFDNMSB), Institut de Mathematiques et de Sciences Physiques, Porto-Novo, Benin
@article{JNSA_2023_16_2_a3,
     author = {Miwadinou, C. H.  and Hinvi, L. A.  and Ainamon, C.  and Monwanou, A. V. },
     title = {Effect of an amplitude modulated force on vibrational resonance, chaos, and multistability in a modified {Van} der {Pol-Duffing} oscillator},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {111-122},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2023},
     doi = {10.22436/jnsa.016.02.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.02.04/}
}
TY  - JOUR
AU  - Miwadinou, C. H. 
AU  - Hinvi, L. A. 
AU  - Ainamon, C. 
AU  - Monwanou, A. V. 
TI  - Effect of an amplitude modulated force on vibrational resonance, chaos, and multistability in a modified Van der Pol-Duffing oscillator
JO  - Journal of nonlinear sciences and its applications
PY  - 2023
SP  - 111
EP  - 122
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.02.04/
DO  - 10.22436/jnsa.016.02.04
LA  - en
ID  - JNSA_2023_16_2_a3
ER  - 
%0 Journal Article
%A Miwadinou, C. H. 
%A Hinvi, L. A. 
%A Ainamon, C. 
%A Monwanou, A. V. 
%T Effect of an amplitude modulated force on vibrational resonance, chaos, and multistability in a modified Van der Pol-Duffing oscillator
%J Journal of nonlinear sciences and its applications
%D 2023
%P 111-122
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.02.04/
%R 10.22436/jnsa.016.02.04
%G en
%F JNSA_2023_16_2_a3
Miwadinou, C. H. ; Hinvi, L. A. ; Ainamon, C. ; Monwanou, A. V. . Effect of an amplitude modulated force on vibrational resonance, chaos, and multistability in a modified Van der Pol-Duffing oscillator. Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 2, p. 111-122. doi : 10.22436/jnsa.016.02.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.02.04/

[1] Binous, H.; Bellagi, A. Introducing nonlinear dynamics to chemical and biochemical engineering graduate students using MATHEMATICA©, Comput. Appl. Eng. Educ., Volume 27 (2018), pp. 1-19 | DOI

[2] Blekhman, I. I.; Landa, P. S. Conjugate resonances and bifurcations in nonlinear systems under biharmonical excitation, Int. J. Non-linear Mech., Volume 39 (2004), pp. 421-426 | Zbl

[3] Kadji, H. G. Enjieu; Nbendjo, B. R. Nana Passive aerodynamics control of plasma instabilities, Commun. Nonlinear Sci. Numer. Simul., Volume 17 (2012), pp. 1779-1794 | Zbl | DOI

[4] Gruebelle, M.; Wolynes, P. G. Vibrational Energy Flow and Chemical Reactions, Acc. Chem. Res., Volume 37 (2004), pp. 261-267

[5] Guruparan, S.; Ravindran, D. N. B.; Ravichandran, V.; Chinnathambi, V.; Rajasekar, S. Hysteresis, Vibrational Resonance and Chaos in Brusselator Chemical System under the Excitation of Amplitude Modulated Force, Chem. sci. rev. lett., Volume 4 (2015), pp. 870-879

[6] Hayashi, C. Nonlinear Oscillations in Physical Systems, McGraw-Hill Book Co., New York-Toronto-London, 1964

[7] Imbihl, R.; Ertl, G. Oscillatory kinetics in heterogeneous catalysis, Chem. Rev., Volume 95 (1995), pp. 697-733 | DOI

[8] Jeevarathinam, C.; Rajasekar, S.; uan, M. A. F. Sanj ´ Vibrational Resonance in the Duffing Oscillator with Distributed Time-Delayed Feedback, J. Appl. Nonlinear Dyn., Volume 4 (2015), pp. 1-20 | Zbl

[9] Kevrekidis, I. G.; Shmidt, L. D.; Aris, R. Some common features of periodically forced reacting systems, Chem. Eng. Sci., Volume 41 (1986), pp. 1263-1276 | DOI

[10] Landa, P. S.; McClintock, P. V. E. Vibrational resonance, J. Phys. A, Volume 33 (2000), pp. 1-433 | DOI

[11] Leutcho, G. D.; Jafari, S.; Hamarash, I. I.; Kengne, J.; Njitacke, Z. Tabekoueng; Hussain, I. A new megastable nonlinear oscillator with infinite attractors, Chaos Solitons Fractals, Volume 134 (2020), pp. 1-7 | Zbl | DOI

[12] Leutcho, G. D.; Khalaf, A. J. M.; Njitacke, Z. Tabekoueng; Fozin, T. Fonzin; Kengne, J.; Jafari, S.; Hussain, I. A new oscillator with mega-stability and its Hamilton energy: infinite coexisting hidden and self-excited attractors, Chaos, Volume 30 (2020), pp. 1-8 | DOI | Zbl

[13] Miwadinou, C. H.; Monwanou, A. V.; Hinvi, L. A.; Orou, J. B. Chabi Effect of amplitude modulated signal on chaotic motions in a mixed Rayleigh-Li´enard oscillator, Chaos Solitons Fractals, Volume 113 (2018), pp. 89-101 | DOI

[14] Miwadinou, C. H.; Monwanou, A. V.; Koukpemedji, A. A.; Kpomahou, Y. J. F.; Orou, J. B. Chabi Chaotic Motions in Forced Mixed Rayleigh-Li´enard Oscillator with External and Parametric Periodic-Excitations, Int. J. Bifurc. Chaos, Volume 28 (2018), pp. 1-16 | DOI

[15] Miwadinou, C. H.; Monwanou, A. V.; Yovogan, J.; Hinvi, L. A.; Tuwa, P. R. Nwagoum; Orou, J. B. Chabi Modeling nonlinear dissipative chemical dynamics by a forced modified Van der Pol-Duffing oscillator with asymmetric potential: Chaotic behaviors predictions, Chin. J. Phys., Volume 56 (2018), pp. 1089-1104

[16] Monwanou, A. V.; Koukp´em`edji, A. A.; Ainamon, C.; Tuwa, P. R. Nwagoum; Miwadinou, C. H.; Orou, J. B. Chabi Nonlinear Dynamics in a Chemical Reaction under an Amplitude-Modulated Excitation: Hysteresis, Vibrational Resonance, Multistability and Chaos, Complexity, Volume 2020 (2020), pp. 1-16 | DOI

[17] Mukundan, T. R. Solution of cubic equations: An alternative method, Resonance, Volume 15 (2020), pp. 347-350 | DOI

[18] Nayfeh, A. H. Introduction to perturbation techniques, Wiley-Interscience [John Wiley & Sons], New York, 1981

[19] Nicolis, G.; Prigogine, I. Self-organization in nonequilibrium systems, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977 | Zbl

[20] Njitacke, Z. T.; Isaac, S. D.; Nestor, T.; Kengne, J. Window of multistability and its control in a simple 3D Hopfield neural network: application to biomedical image encryption, Neural. Comput. Appl., Volume 33 (2021), pp. 6733-6752 | DOI

[21] Njitacke, Z. T.; Mogue, R. L. T.; Leutcho, G. D.; Fozin, T. Fonzin; Kengne, J. Heterogeneous multistability in a novel system with purely nonlinear terms, Int. J. Electron., Volume 108 (2021), pp. 1166-1182 | DOI

[22] Olabod´e, D. L.; Miwadinou, C. H.; Monwanou, V. A.; Orou, J. B. Chabi Effects of passive hydrodynamics force on harmonic and chaotic oscillations in nonlinear chemical dynamics, Phys. D, Volume 386/387 (2019), pp. 49-59 | Zbl | DOI

[23] Rajagopal, K.; Kingni, S. T.; Kom, G. H.; Pham, V.-T.; Karthikeyan, A.; Jafari, S. Self-Excited and Hidden Attractors in a Simple Chaotic Jerk System and in Its Time-Delayed Form: Analysis, Electronic Implementation, and Synchronization, J. Korean Phys. Soc., Volume 77 (2020), pp. 145-152 | DOI

[24] Roy-Layinde, T. O.; Laoye, J. A.; Popoola, O. O.; Vincent, U. E. Analysis of vibrational resonance in bi-harmonically driven plasma, Chaos, Volume 26 (2016), pp. 1-9 | Zbl | DOI

[25] Sarkar, P.; Ray, D. S. Vibrational antiresonance in nonlinear coupled systems, Phys. Rev. E, Volume 99 (2019), pp. 1-7 | DOI

[26] Shabunin, A.; Astakhov, V.; Demidov, V.; A.Provata; Baras, F.; Nicolis, G.; Anishchenko, V. Modeling chemical reactions by forced limit-cycle oscillator: synchronization phenomena and transition to chaos, Chaos Solit. Fract., Volume 15 (2003), pp. 395-405 | Zbl

[27] Shabunin, A. V.; Baras, F.; Provata, A. Oscillatory reactive dynamics on surfaces: a lattice limit cycle model, Phys. Rev. E, Volume 66 (2002), pp. 1-11

[28] Strogatz, S. Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering, 2nd ed.,, CRC Press, Boca Raton, 2018 | DOI

[29] Takoudis, C. G.; Schmidt, L. D.; Aris, R. Isothermal sustained oscillations in very simple surface reaction, Surf. Sci., Volume 105 (1981), pp. 325-333 | DOI

[30] Taylor, M. A.; Kevrekidis, I. G. Some common dynamics features of coupled reacting systems, Phys. D, Volume 51 (1991), pp. 274-292 | DOI

[31] Zhang, C.; Bi, Q.; Han, X.; Zhang, Z. On two-parameter bifurcation analysis of switched system composed of Duffing and van der Pol oscillators, Commun. Nonlinear Sci. Numer. Simul., Volume 19 (2014), pp. 750-757 | DOI | Zbl

[32] Zhang, C.; Ma, X.; Bi, Q. Complex mixed-mode oscillations based on a modified Rayleigh-Duffing oscillator driven by low-frequency excitations, Chaos Solitons Fractals, Volume 160 (2022), pp. 1-9 | DOI | Zbl

[33] Zhang, C.; Ma, X.; Tang, Q.; Bi, Q. Complex bifurcation structures and bursting oscillations of an extended Duffing-van der Pol oscillator, Math. Methods Appl. Sci. (2022), pp. 1-17 | DOI

Cité par Sources :