Fuzzy implications based on quasi-copula and fuzzy negations
Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 2, p. 99-110.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this particular paper the connection of fuzzy implications to the basic concepts of probability theory such as copula, quasi-copula and semi-copula is being studied. This study showed that fuzzy implications produced through copula, quasi-copula or semi-copula, apart from having as a common characteristic the Lipschitz condition with constant 1, this characteristic is also the cornerstone for grouping fuzzy implications according to the original generator which is no other than a copula, quasi-copula or semi-copula.
DOI : 10.22436/jnsa.016.02.03
Classification : 03B52, 03B50, 94D05, 03E72
Keywords: Fuzzy implications, fuzzy negations, copula, quasi-copula, semi-copula, aggregations functions

Souliotis, G. 1 ; Rassias, M. Th.  2 ; Papadopoulos, B. 1

1 Department of Civil Engineering, Section of Mathematics and Informatics, Democritus University of Thrace, 67100 Kimeria, Greece
2 Hellenic Military Academy, Greece;Institute for Advanced Study, Princeton, USA
@article{JNSA_2023_16_2_a2,
     author = {Souliotis, G. and Rassias, M. Th.  and Papadopoulos, B.},
     title = {Fuzzy implications based on quasi-copula and fuzzy negations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {99-110},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2023},
     doi = {10.22436/jnsa.016.02.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.02.03/}
}
TY  - JOUR
AU  - Souliotis, G.
AU  - Rassias, M. Th. 
AU  - Papadopoulos, B.
TI  - Fuzzy implications based on quasi-copula and fuzzy negations
JO  - Journal of nonlinear sciences and its applications
PY  - 2023
SP  - 99
EP  - 110
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.02.03/
DO  - 10.22436/jnsa.016.02.03
LA  - en
ID  - JNSA_2023_16_2_a2
ER  - 
%0 Journal Article
%A Souliotis, G.
%A Rassias, M. Th. 
%A Papadopoulos, B.
%T Fuzzy implications based on quasi-copula and fuzzy negations
%J Journal of nonlinear sciences and its applications
%D 2023
%P 99-110
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.02.03/
%R 10.22436/jnsa.016.02.03
%G en
%F JNSA_2023_16_2_a2
Souliotis, G.; Rassias, M. Th. ; Papadopoulos, B. Fuzzy implications based on quasi-copula and fuzzy negations. Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 2, p. 99-110. doi : 10.22436/jnsa.016.02.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.02.03/

[1] Alsina, C.; Nelsen, R. B.; Schweizer, B. On the characterization of a class of binary operations on distribution functions, Statist. Probab. Lett., Volume 17 (1993), pp. 85-89 | DOI | Zbl

[2] nski, M. Baczy´; Grzegorzewski, P.; Mesiar, R.; Helbin, P.; Niemyska, W. Fuzzy implications based on semicopulas, Fuzzy Sets and Systems, Volume 323 (2017), pp. 138-151 | Zbl | DOI

[3] nski, M. Baczy´; Jayaram, B. Fuzzy implications, Springer, Berlin, 2008 | DOI

[4] Calvo, T.; Koles´arov´a, A.; Komorn´ıkov´a, M.; Mesiar, R. Aggregation operators: properties, classes and construction methods, In: Aggregation operators, Stud. Fuzziness Soft Comput., Volume 97 (2002), pp. 3-104 | DOI | Zbl

[5] Dibala, M.; Saminger-Platz, S.; Mesiar, R.; Klement, E. P. Defects and transformations of quasi-copulas, Kybernetika, Volume 52 (2016), pp. 848-865 | Zbl | DOI

[6] Durante, F.; Quesada-Molina, J.; Sempi, C. Semicopulas: characterizations and applicability, Kybernetika, Volume 42 (2006), pp. 287-302 | Zbl

[7] Durante, F.; Sempi, C. Semicopulæ, Kybernetika, Volume 41 (2005), pp. 315-328 | Zbl

[8] Fodor, J. C.; Roubens, M. Fuzzy preference modelling and multicriteria decision support, Kluwer Academic Publishers, Dordrecht, 1994 | Zbl

[9] Garc´ıa, F. S.; lvarez, P. G. A´ Two families of fuzzy integrals, Fuzzy Sets and Systems, Volume 18 (1986), pp. 67-81 | DOI | Zbl

[10] Genest, C.; Molina, J. J. Q.; Lallena, J. A. R.; Sempi, C. A characterization of quasi-copulas, J. Multivariate Anal., Volume 69 (1999), pp. 193-205 | DOI | Zbl

[11] Grabisch, M.; Marichal, J.-L.; Mesiar, R.; Pap, E. Aggregation functions, Cambridge University Press, Cambridge, 2009 | DOI

[12] Grzegorzewski, P. Probabilistic implications, Fuzzy Sets and Systems, Volume 226 (2013), pp. 53-66 | DOI

[13] Kalick´, J. On some construction methods for 1-Lipschitz aggregation functions, Fuzzy sets and Systems, Volume 160 (2009), pp. 726-732 | DOI | Zbl

[14] Kitainik, L. Fuzzy decision procedures with binary relations, Kluwer Academic Publishers, Boston, 1993 | Zbl | DOI

[15] Klement, E. P.; Mesiar, R.; Pap, E. Triangular norms: Basic notions and properties, In: Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms, Elsevier B. V., Amsterdam (2005), pp. 17-60 | DOI | Zbl

[16] Koles´arov´a, A. 1-Lipschitz aggregation operators and quasi-copulas, Kybernetika, Volume 39 (2003), pp. 615-629 | Zbl

[17] Mesiar, R.; Koles´arov´a, A.; Quasi-copulas copulas and fuzzy implicators, Int. J. Comput. Intell. Syst., Volume 13 (2020), pp. 681-689 | DOI

[18] Nelsen, R. B. An introduction to copulas, Springer, New York, 2006 | DOI | Zbl

[19] ˇSabo, M.; Streˇzo, P. On reverses of some binary operators, Kybernetika, Volume 41 (2005), pp. 435-450 | Zbl

[20] Souliotis, G.; Papadopoulos, B. An algorithm for producing fuzzy negations via conical sections, Algorithms, Volume 12 (2019), pp. 1-8 | Zbl | DOI

Cité par Sources :