Voir la notice de l'article provenant de la source International Scientific Research Publications
Athanasiadou, E. S.  1
@article{JNSA_2023_16_2_a0, author = {Athanasiadou, E. S. }, title = {The reciprocity gap functional method for an impedance inverse scattering problem in chiral media}, journal = {Journal of nonlinear sciences and its applications}, pages = {79-89}, publisher = {mathdoc}, volume = {16}, number = {2}, year = {2023}, doi = {10.22436/jnsa.016.02.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.02.01/} }
TY - JOUR AU - Athanasiadou, E. S. TI - The reciprocity gap functional method for an impedance inverse scattering problem in chiral media JO - Journal of nonlinear sciences and its applications PY - 2023 SP - 79 EP - 89 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.02.01/ DO - 10.22436/jnsa.016.02.01 LA - en ID - JNSA_2023_16_2_a0 ER -
%0 Journal Article %A Athanasiadou, E. S. %T The reciprocity gap functional method for an impedance inverse scattering problem in chiral media %J Journal of nonlinear sciences and its applications %D 2023 %P 79-89 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.02.01/ %R 10.22436/jnsa.016.02.01 %G en %F JNSA_2023_16_2_a0
Athanasiadou, E. S. . The reciprocity gap functional method for an impedance inverse scattering problem in chiral media. Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 2, p. 79-89. doi : 10.22436/jnsa.016.02.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.02.01/
[1] Time-harmonic electromagnetic fields in thin chiral surved layeres, SIAM J. Math. Anal., Volume 29 (1998), pp. 395-423 | DOI
[2] The definition and measurement of electromagnetic chirality, Math. Meth. Appl. Sci., Volume 41 (2018), pp. 559-572 | DOI | Zbl
[3] The reciprocity gap operator for electromagnetic scattering in chiral media, Appl. Anal., Volume 14 (2022), pp. 5006-5016 | Zbl | DOI
[4] Beltrami Herglotz functions for electromagnetic scattering theory in chiral media, Appl. Anal., Volume 84 (2005), pp. 145-163 | Zbl | DOI
[5] An application of the reciprocity gap functional to inverse mixed impedance problems in elasticity, Inverse Probl., Volume 26 (2010), pp. 1-19 | Zbl | DOI
[6] The direct electromagnetic scattering problem by a mixed impedance screen in chiral media, Appl. Anal., Volume 91 (2012), pp. 2083-2093 | DOI | Zbl
[7] The inverse electromagnetic scattering problem by a mixed impedance screen in chiral media, Inverse Probl. Imaging, Volume 9 (2015), pp. 951-970 | Zbl | DOI
[8] Qualitative Methods in Inverse Elctromagnetic Scattering Theory, Springer-Verlag, Berlin, 2006 | DOI
[9] Target identification of buried coated objects, Comput. Appl. Math., Volume 25 (2006), pp. 269-288 | DOI | Zbl
[10] The electromagnetic inverse scattering problem for partially coated Lipschitz domains, Proc. R. Soc. Edinb. A: Math., Volume 134 (2004), pp. 661-682 | DOI
[11] The Linear sampling method in inverse electromagnetic scattering, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, 2011 | DOI | Zbl
[12] Analysis of two linear sampling methods applied to electromagnetic imaging of buried objects, Inverse Probl., Volume 22 (2006), pp. 845-867 | DOI | Zbl
[13] Identification of partially coated anisotropic buried objects using electromagnetic Cauchy data, J. Integral Equ. Appl., Volume 19 (2007), pp. 359-389 | Zbl | DOI
[14] Object identification in Radar imaging via the reciprocity gap method, Radio Sci., Volume 55 (2020), pp. 1-10 | DOI
[15] An application of the reciprocity gap functional to inverse scattering theory, Inverse Probl., Volume 21 (2005), pp. 383-398 | Zbl | DOI
[16] Beltrami Fields in Chiral Media, World Scientific, Singapore, 1994
[17] Time-harmonic electromagnetic fields in chiral media, Springer-Verlag, Berlin, 1989 | DOI
[18] Electromagnetic waves in chiral and bi-isotropic media, Artech House, , 1994
[19] Finite Element Methods for Maxwell’s Equations, Oxford University Press, New York, 2003 | DOI
[20] The reciprocity gap functional method for the inverse scattering problem for cavities, Appl. Anal., Volume 95 (2016), pp. 1327-1346 | Zbl | DOI
[21] Optical Chiral Metamaterials: a Review of the Fundamentals, Fabrication Methods and Applications, Nanotechnology, Volume 27 (2016), pp. 1-20
[22] Reciprocity gap method for an interior inverse scattering problem, J. Inverse Ill-Posed Probl., Volume 25 (2017), pp. 57-68 | Zbl | DOI
Cité par Sources :