Auto-oscillation of a generalized Gause type model with a convex contraint
Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 1, p. 60-78.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we study the generalized Gause model in which the functional and numerical responses of the predators need not be monotonic functions and the intrinsic mortality rate of the predators is a variable function. As a result, we have established sufficient conditions for the existence, uniqueness and global stability of limit cycles confined in a closed convex nonempty set, by relying on a recent Lobanova and Sadovskii theorem. Moreover, we prove sufficient conditions for the existence of Hopf bifurcation. Eventually using scilab, we illustrate the validity of the results with numerical simulations.
DOI : 10.22436/jnsa.016.01.06
Classification : 92F05, 92B05, 37N25, 37G15
Keywords: Generalized Gause model, nonmonotonic numerical responses, nonconstant death rate, convex constraint, global stability, limit cycle, Hopf bifurcation, first Lyapunov number

Degla, G. A.  1 ; Degbo, S. J.  1 ; Dossou-Yovo, M.  1

1 Institut of Mathematics and Physical Sciences (IMSP), University of Abomey Calavi, BP 613 Porto-Novo, Benin Republic
@article{JNSA_2023_16_1_a5,
     author = {Degla, G. A.  and Degbo, S. J.  and Dossou-Yovo, M. },
     title = {Auto-oscillation of a generalized {Gause} type model with a convex contraint},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {60-78},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2023},
     doi = {10.22436/jnsa.016.01.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.06/}
}
TY  - JOUR
AU  - Degla, G. A. 
AU  - Degbo, S. J. 
AU  - Dossou-Yovo, M. 
TI  - Auto-oscillation of a generalized Gause type model with a convex contraint
JO  - Journal of nonlinear sciences and its applications
PY  - 2023
SP  - 60
EP  - 78
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.06/
DO  - 10.22436/jnsa.016.01.06
LA  - en
ID  - JNSA_2023_16_1_a5
ER  - 
%0 Journal Article
%A Degla, G. A. 
%A Degbo, S. J. 
%A Dossou-Yovo, M. 
%T Auto-oscillation of a generalized Gause type model with a convex contraint
%J Journal of nonlinear sciences and its applications
%D 2023
%P 60-78
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.06/
%R 10.22436/jnsa.016.01.06
%G en
%F JNSA_2023_16_1_a5
Degla, G. A. ; Degbo, S. J. ; Dossou-Yovo, M. . Auto-oscillation of a generalized Gause type model with a convex contraint. Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 1, p. 60-78. doi : 10.22436/jnsa.016.01.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.06/

[1] Andrews, J. F. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnol. Bioeng., Volume 10 (1968), pp. 707-723

[2] Appell, J.; Merentez, N.; Hern´andez, J. L. S´anchez Locally Lipschitz composition operators in spaces of functions of bounded variation, Annali di Matematica, Volume 190 (2011), pp. 33-43 | DOI | Zbl

[3] Boon, B.; Landelout, H. Kinetics of nitrite oxidation by nitrobacter winogradski, Biochem. J., Volume 85 (1962), pp. 440-447

[4] Cavani, M.; Farkas, M. Bifurcations in a predator-prey model with memory and diffusion, I: Andronov-Hopf bifurcation, Acta Math. Hung., Volume 63 (1994), pp. 213-229 | Zbl | DOI

[5] Cheng, K. S. Uniqueness of a limit cycle for a predator-prey system, SIAM J. Math. Anal., Volume 12 (1981), pp. 541-548 | DOI | Zbl

[6] Dai, C.; Liu, H.; Jin, Z.; Guo, Q.; Wang, Y.; Yu, H.; al., et Dynamic analysis of a heterogeneous diffusive prey-predator system in time-periodic environment, Complexity (2020), pp. 1-13 | Zbl

[7] Duque, C.; Lizana, M. Partial characterization of the global dynamic of a predator-prey model with non constant mortality rate, Differ. Equations Dyn. Syst., Volume 17 (2009), pp. 63-75 | DOI | Zbl

[8] Duque, C.; Lizana, M. On the dynamics of a predator-prey model with nonconstant death rate and diffusion, Nonlinear Anal.: Real World Appl., Volume 12 (2011), pp. 2198-2210 | DOI | Zbl

[9] Edwards, V. H. Influence of high substrate concentrations on microbial kinetics, Biotechnol. Bioeng, Volume 12 (1970), pp. 679-712 | DOI

[10] Freedman, H. I. Deterministic Mathematical Models in Population Ecology, Marcel Dekker, New York, 1980

[11] mod`eles, Oscillations en biologie Analyse qualitative et J. Francoise, Springer-Verlag, Berlin Heidelberg, 2005

[12] problem, Global Bifurcation theory and Hilbert´s sixteenth V. A. Gaiko, Kluwer Academic Publishers, USA, 2003 | DOI | Zbl

[13] Hasik, K. Uniqueness of limit cycle in predator-prey system with symmetric prey isocline, Math. Biosci., Volume 164 (2000), pp. 203-215 | DOI | Zbl

[14] Hwang, W. T. Uniqueness of the Limit Cycle for Gause-Type Predator-Prey Systems, J. Math. Anal. Appl., Volume 238 (1999), pp. 179-195 | DOI | Zbl

[15] Huang, X. C.; Merrill, S. Condition for uniqueness of limit cycles in general predator-prey system, Math. Biosci., Volume 96 (1989), pp. 47-60 | DOI

[16] Kuang, Y.; Freedman, H. I. Uniqueness of the limit cycles in Gauss-type models of predator-prey systems, Maths Biosci., Volume 88 (1988), pp. 67-84

[17] Lobanova, O. A.; Sadovskii, B. N. On two-dimensional dynamical systems with constraint, Differential Equations, Volume 43 (2007), pp. 460-468 | Zbl | DOI

[18] Liou, L. P.; Cheng, K. S. On the uniqueness of a limit cycle for a predator-prey system, SIAM J. Math. Anal., Volume 19 (1988), pp. 867-878 | DOI | Zbl

[19] Perko, L. Differential equations and dynamical systems, Springer, New York, 1996 | DOI

[20] Sokol, W.; Howell, J. A. Kinetics of phenol oxidation by washed cells, Biotechnol. Bioeng., Volume 23 (1981), pp. 2039-2049

[21] Wolkowicz, G. S. K. Bifurcation analysis of a predator-prey system involving group defence, SIAM J. Appl. Math., Volume 48 (1988), pp. 592-606 | Zbl | DOI

[22] Yang, R. Hopf bifurcation analysis of a delayed diffusive predator-prey system with nonconstant death rate, Chaos Solitons Fractals, Volume 81 (2015), pp. 224-232 | DOI | Zbl

[23] Yang, R. D.; Humphrey, A. E. Dynamics and steady state studies of phenol biodegeneration in pure and mixed cultures, Biotechnol. Bioeng., Volume 17 (1975), pp. 1211-1235

[24] Yang, W. S. Dynamics of a diffusive predator-prey model with general nonlinear functional response, Sci. World J. (2014), pp. 1-10 | DOI

Cité par Sources :