Voir la notice de l'article provenant de la source International Scientific Research Publications
Degla, G. A.  1 ; Degbo, S. J.  1 ; Dossou-Yovo, M.  1
@article{JNSA_2023_16_1_a5, author = {Degla, G. A. and Degbo, S. J. and Dossou-Yovo, M. }, title = {Auto-oscillation of a generalized {Gause} type model with a convex contraint}, journal = {Journal of nonlinear sciences and its applications}, pages = {60-78}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2023}, doi = {10.22436/jnsa.016.01.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.06/} }
TY - JOUR AU - Degla, G. A. AU - Degbo, S. J. AU - Dossou-Yovo, M. TI - Auto-oscillation of a generalized Gause type model with a convex contraint JO - Journal of nonlinear sciences and its applications PY - 2023 SP - 60 EP - 78 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.06/ DO - 10.22436/jnsa.016.01.06 LA - en ID - JNSA_2023_16_1_a5 ER -
%0 Journal Article %A Degla, G. A. %A Degbo, S. J. %A Dossou-Yovo, M. %T Auto-oscillation of a generalized Gause type model with a convex contraint %J Journal of nonlinear sciences and its applications %D 2023 %P 60-78 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.06/ %R 10.22436/jnsa.016.01.06 %G en %F JNSA_2023_16_1_a5
Degla, G. A. ; Degbo, S. J. ; Dossou-Yovo, M. . Auto-oscillation of a generalized Gause type model with a convex contraint. Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 1, p. 60-78. doi : 10.22436/jnsa.016.01.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.06/
[1] A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnol. Bioeng., Volume 10 (1968), pp. 707-723
[2] Locally Lipschitz composition operators in spaces of functions of bounded variation, Annali di Matematica, Volume 190 (2011), pp. 33-43 | DOI | Zbl
[3] Kinetics of nitrite oxidation by nitrobacter winogradski, Biochem. J., Volume 85 (1962), pp. 440-447
[4] Bifurcations in a predator-prey model with memory and diffusion, I: Andronov-Hopf bifurcation, Acta Math. Hung., Volume 63 (1994), pp. 213-229 | Zbl | DOI
[5] Uniqueness of a limit cycle for a predator-prey system, SIAM J. Math. Anal., Volume 12 (1981), pp. 541-548 | DOI | Zbl
[6] Dynamic analysis of a heterogeneous diffusive prey-predator system in time-periodic environment, Complexity (2020), pp. 1-13 | Zbl
[7] Partial characterization of the global dynamic of a predator-prey model with non constant mortality rate, Differ. Equations Dyn. Syst., Volume 17 (2009), pp. 63-75 | DOI | Zbl
[8] On the dynamics of a predator-prey model with nonconstant death rate and diffusion, Nonlinear Anal.: Real World Appl., Volume 12 (2011), pp. 2198-2210 | DOI | Zbl
[9] Influence of high substrate concentrations on microbial kinetics, Biotechnol. Bioeng, Volume 12 (1970), pp. 679-712 | DOI
[10] Deterministic Mathematical Models in Population Ecology, Marcel Dekker, New York, 1980
[11] J. Francoise, Springer-Verlag, Berlin Heidelberg, 2005
[12] V. A. Gaiko, Kluwer Academic Publishers, USA, 2003 | DOI | Zbl
[13] Uniqueness of limit cycle in predator-prey system with symmetric prey isocline, Math. Biosci., Volume 164 (2000), pp. 203-215 | DOI | Zbl
[14] Uniqueness of the Limit Cycle for Gause-Type Predator-Prey Systems, J. Math. Anal. Appl., Volume 238 (1999), pp. 179-195 | DOI | Zbl
[15] Condition for uniqueness of limit cycles in general predator-prey system, Math. Biosci., Volume 96 (1989), pp. 47-60 | DOI
[16] Uniqueness of the limit cycles in Gauss-type models of predator-prey systems, Maths Biosci., Volume 88 (1988), pp. 67-84
[17] On two-dimensional dynamical systems with constraint, Differential Equations, Volume 43 (2007), pp. 460-468 | Zbl | DOI
[18] On the uniqueness of a limit cycle for a predator-prey system, SIAM J. Math. Anal., Volume 19 (1988), pp. 867-878 | DOI | Zbl
[19] Differential equations and dynamical systems, Springer, New York, 1996 | DOI
[20] Kinetics of phenol oxidation by washed cells, Biotechnol. Bioeng., Volume 23 (1981), pp. 2039-2049
[21] Bifurcation analysis of a predator-prey system involving group defence, SIAM J. Appl. Math., Volume 48 (1988), pp. 592-606 | Zbl | DOI
[22] Hopf bifurcation analysis of a delayed diffusive predator-prey system with nonconstant death rate, Chaos Solitons Fractals, Volume 81 (2015), pp. 224-232 | DOI | Zbl
[23] Dynamics and steady state studies of phenol biodegeneration in pure and mixed cultures, Biotechnol. Bioeng., Volume 17 (1975), pp. 1211-1235
[24] Dynamics of a diffusive predator-prey model with general nonlinear functional response, Sci. World J. (2014), pp. 1-10 | DOI
Cité par Sources :