On the analytic and approximate solutions for the fractional nonlinear Schrödinger equations
Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 1, p. 51-59.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this work, we are devoted to the following fractional nonlinear Schrödinger equation with the initial conditions in the Caputo sense for $1 \alpha \leq 2$: \begin{equation}\label{J1} \begin{cases} \displaystyle i \frac{ _c \partial^{\alpha}}{\partial \theta^{\alpha}} W(\theta, \sigma) + \beta_1 \frac{ \partial^{2}}{\partial \sigma^{2}} W(\theta, \sigma) \\ \hspace{0.5in} + \gamma (\theta, \sigma) W(\theta, \sigma) + \beta_2 |W(\theta, \sigma)|^2 W (\theta, \sigma) + \beta_3 W^2 (\theta, \sigma) = 0,\\ W(0, \sigma) = \phi_1(\sigma), \quad W_\theta'(0, \sigma) = \phi_2(\sigma), \end{cases} \end{equation} where $\theta > 0, \sigma \in \mathbb{R}$, $\gamma(\theta, \sigma)$ is a continuous function and $\beta_1, \beta_2, \beta_3$ are constants. Our analysis for deriving analytic and approximate solutions to the Schrödinger equation relies on the Adomian decomposition method and fractional calculus. Several illustrative examples are presented to demonstrate the solution constructions. Finally, the variant and symmetric system of the fractional nonlinear Schrödinger equations are studied.
DOI : 10.22436/jnsa.016.01.05
Classification : 35C20, 26A33
Keywords: Adomian's decomposition method, Fractional nonlinear Schrödinger equation, Fractional calculus, Approximate solution

Li, C. 1 ; Nonlaopon, K. 2 ; Hrytsenko, A. 1 ; Beaudin, J.  1

1 Department of Mathematics and Computer Science, Brandon University, Brandon, Manitoba, R7A 6A9, Canada
2 Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
@article{JNSA_2023_16_1_a4,
     author = {Li, C. and Nonlaopon, K. and Hrytsenko, A. and Beaudin, J. },
     title = {On the analytic and approximate solutions for the fractional nonlinear {Schr\"odinger} equations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {51-59},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2023},
     doi = {10.22436/jnsa.016.01.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.05/}
}
TY  - JOUR
AU  - Li, C.
AU  - Nonlaopon, K.
AU  - Hrytsenko, A.
AU  - Beaudin, J. 
TI  - On the analytic and approximate solutions for the fractional nonlinear Schrödinger equations
JO  - Journal of nonlinear sciences and its applications
PY  - 2023
SP  - 51
EP  - 59
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.05/
DO  - 10.22436/jnsa.016.01.05
LA  - en
ID  - JNSA_2023_16_1_a4
ER  - 
%0 Journal Article
%A Li, C.
%A Nonlaopon, K.
%A Hrytsenko, A.
%A Beaudin, J. 
%T On the analytic and approximate solutions for the fractional nonlinear Schrödinger equations
%J Journal of nonlinear sciences and its applications
%D 2023
%P 51-59
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.05/
%R 10.22436/jnsa.016.01.05
%G en
%F JNSA_2023_16_1_a4
Li, C.; Nonlaopon, K.; Hrytsenko, A.; Beaudin, J. . On the analytic and approximate solutions for the fractional nonlinear Schrödinger equations. Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 1, p. 51-59. doi : 10.22436/jnsa.016.01.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.05/

[1] Atangana, A. Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fractals, Volume 102 (2017), pp. 396-406 | Zbl | DOI

[2] Seadawy, A. R.; Lu, D.; Yue, C. Travelling wave solutions of the generalized nonlinear fifth-order KdV water wave equations and its stability, J. Taibah Univ. Sci., Volume 11 (2017), pp. 623-633

[3] Helal, M. A.; Seadawy, A. R.; Zekry, M. H. Stability analysis of solitary wave solutions for the fourth-order nonlinear Boussinesq water wave equation, Appl. Math. Comput., Volume 232 (2014), pp. 1-1094 | Zbl | DOI

[4] Vlase, S.; Marin, M.; Ochsner, A.; ML., Scutaru Motion equation for a flexible onedimensional element used in the dynamical analysis of a multibody system, Contin. Mech. Thermodyn., Volume 31 (2019), pp. 715-724 | DOI

[5] Malomed, B. Nonlinear Schr¨odinger equations. In Scott, Alwyn (ed.), Encyclopedia of Nonlinear Science, , New York: Routledge, 2005

[6] Rida, S. Z.; El-Sherbinyb, H. M.; Arafa, A. A. M. On the solution of the fractional nonlinear Schr¨odinger equation, Phys. lett. A, Volume 372 (2008), pp. 553-558 | DOI

[7] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006

[8] Li, C.; Saadati, R.; Srivastava, R.; Beaudin, J. On the boundary value problem of nonlinear fractional integro-differential equations, Mathematics, Volume 10 (2020), pp. 1-14 | DOI

Cité par Sources :