Voir la notice de l'article provenant de la source International Scientific Research Publications
Li, C. 1 ; Nonlaopon, K. 2 ; Hrytsenko, A. 1 ; Beaudin, J.  1
@article{JNSA_2023_16_1_a4, author = {Li, C. and Nonlaopon, K. and Hrytsenko, A. and Beaudin, J. }, title = {On the analytic and approximate solutions for the fractional nonlinear {Schr\"odinger} equations}, journal = {Journal of nonlinear sciences and its applications}, pages = {51-59}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2023}, doi = {10.22436/jnsa.016.01.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.05/} }
TY - JOUR AU - Li, C. AU - Nonlaopon, K. AU - Hrytsenko, A. AU - Beaudin, J. TI - On the analytic and approximate solutions for the fractional nonlinear Schrödinger equations JO - Journal of nonlinear sciences and its applications PY - 2023 SP - 51 EP - 59 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.05/ DO - 10.22436/jnsa.016.01.05 LA - en ID - JNSA_2023_16_1_a4 ER -
%0 Journal Article %A Li, C. %A Nonlaopon, K. %A Hrytsenko, A. %A Beaudin, J. %T On the analytic and approximate solutions for the fractional nonlinear Schrödinger equations %J Journal of nonlinear sciences and its applications %D 2023 %P 51-59 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.05/ %R 10.22436/jnsa.016.01.05 %G en %F JNSA_2023_16_1_a4
Li, C.; Nonlaopon, K.; Hrytsenko, A.; Beaudin, J. . On the analytic and approximate solutions for the fractional nonlinear Schrödinger equations. Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 1, p. 51-59. doi : 10.22436/jnsa.016.01.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.05/
[1] Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fractals, Volume 102 (2017), pp. 396-406 | Zbl | DOI
[2] Travelling wave solutions of the generalized nonlinear fifth-order KdV water wave equations and its stability, J. Taibah Univ. Sci., Volume 11 (2017), pp. 623-633
[3] Stability analysis of solitary wave solutions for the fourth-order nonlinear Boussinesq water wave equation, Appl. Math. Comput., Volume 232 (2014), pp. 1-1094 | Zbl | DOI
[4] Motion equation for a flexible onedimensional element used in the dynamical analysis of a multibody system, Contin. Mech. Thermodyn., Volume 31 (2019), pp. 715-724 | DOI
[5] Nonlinear Schr¨odinger equations. In Scott, Alwyn (ed.), Encyclopedia of Nonlinear Science, , New York: Routledge, 2005
[6] On the solution of the fractional nonlinear Schr¨odinger equation, Phys. lett. A, Volume 372 (2008), pp. 553-558 | DOI
[7] Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006
[8] On the boundary value problem of nonlinear fractional integro-differential equations, Mathematics, Volume 10 (2020), pp. 1-14 | DOI
Cité par Sources :