Voir la notice de l'article provenant de la source International Scientific Research Publications
Raj, K. 1 ; Jasrotia, S. 1
@article{JNSA_2023_16_1_a3, author = {Raj, K. and Jasrotia, S.}, title = {Deferred {N\"orlund} statistical convergence in probability, mean and distribution for sequences of random variables}, journal = {Journal of nonlinear sciences and its applications}, pages = {41-50}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2023}, doi = {10.22436/jnsa.016.01.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.04/} }
TY - JOUR AU - Raj, K. AU - Jasrotia, S. TI - Deferred Nörlund statistical convergence in probability, mean and distribution for sequences of random variables JO - Journal of nonlinear sciences and its applications PY - 2023 SP - 41 EP - 50 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.04/ DO - 10.22436/jnsa.016.01.04 LA - en ID - JNSA_2023_16_1_a3 ER -
%0 Journal Article %A Raj, K. %A Jasrotia, S. %T Deferred Nörlund statistical convergence in probability, mean and distribution for sequences of random variables %J Journal of nonlinear sciences and its applications %D 2023 %P 41-50 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.04/ %R 10.22436/jnsa.016.01.04 %G en %F JNSA_2023_16_1_a3
Raj, K.; Jasrotia, S. Deferred Nörlund statistical convergence in probability, mean and distribution for sequences of random variables. Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 1, p. 41-50. doi : 10.22436/jnsa.016.01.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.04/
[1] The generalization of Meyer-K¨onig and Zeller operators by generating functions, J. Math. Anal. Appl., Volume 312 (2005), pp. 181-194 | DOI | Zbl
[2] On statistical deferred Ces`aro summability, Current Trends in Mathematical Analysis and Its Interdisciplinary Applications. Birkh¨auser, Cham, Volume 487 (2019), pp. 885-909 | Zbl | DOI
[3] On lacunary statistically convergent triple sequences in probabilistic normed space, Appl. Math. Inf. Sci., Volume 9 (2015), pp. 2529-2534 | DOI
[4] Deferred statistical convergence and strongly deferred summable functions, AIP Conf. Proc., Volume 2183 (2019)
[5] Norlund statistical convergence and Tauberian conditions for statistical convergence from statistical summability using Norlund means in non-Archimedean fields, Journal of Mathematics and Computer Science, Volume 24 (2022), pp. 299-307
[6] Sur la convergence statistique, Colloquium Mathematicae, Volume 2 (1951), pp. 241-244 | DOI | Zbl | EuDML
[7] On statistical convergence, Analysis, Volume 5 (1985), pp. 301-313 | DOI
[8] Some approximation theorems via statistical convergence, Rocky Mountain Journal of Mathematics, Volume 32 (2002), pp. 129-138 | Zbl | DOI
[9] Statistical convergence for a sequence of random variables and limit theorems, Appl. Math. (Prague), Volume 58 (2013), pp. 423-437 | EuDML
[10] Korovkin-type approximation theorem for Bernstein operator of rough statistical convergence of triple sequences, Adv. Oper. Theory, Volume 5 (2020), pp. 324-335 | DOI | Zbl
[11] Applications of Statistical Convergence of order ( , + ) in difference sequence spaces of fuzzy numbers, J. Intell. Fuzzy Systems, Volume 40 (2021), pp. 4695-4703
[12] On Various New Concepts of Statistical Convergence for Sequences of Random Variables via Deferred Ces`aro Mean, J. Math. Anal. Appl., Volume 487 (2020) | Zbl | DOI
[13] Spaces of neutrosophic -statistical convergence sequences and their properties, Journal of Mathematics and Computer Science, Volume 23 (2021), pp. 1-9
[14] Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM, Volume 113 (2019), pp. 1955-1973 | Zbl | DOI
[15] Statistical convergence of double sequences in locally solid Riesz spaces, Abstr. Appl. Anal., Volume 2012 (2012) | Zbl | DOI
[16] Statistical summability (C, 1) and a Korovkin type approximation theorem, J. Inequal. Appl., Volume 2012 (2012), pp. 1-8 | DOI | Zbl
[17] Weighted statistical convergence and its application to Korovkin type approximation theorem, Adv. Oper. Theory, Volume 218 (2012), pp. 9132-9137 | Zbl | DOI
[18] Applied Summability Methods, Springer Briefs. Springer, New York, 2014 | DOI
[19] Relative modular uniform approximation by means of the power series method with applications, Rev. Un. Mat. Argentina, Volume 60 (2019), pp. 187-208 | DOI | Zbl
[20] Some vector-valued statistical convergent sequence spaces, Malaya J. Mat., Volume 3 (2015), pp. 161-167 | Zbl
[21] Matrix maps on sequence spaces associated with sets of integers, Indian J. Pure Appl. Math., Volume 27 (1996), pp. 197-206 | Zbl
[22] The integrability of certain functions and related summability methods, The American Mathematical Monthly, Volume 66 (1959), pp. 361-775 | DOI | Zbl
[23] Generalized equi-statistical convergence of the deferred N¨orlund summability and its applications to associated approximation theorems, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM, Volume 112 (2018), pp. 1487-1501 | DOI | Zbl
[24] Statistical probability convergence via the deferred N¨orlund mean and its applications to approximation theorems, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM, Volume 114 (2020), pp. 1-14 | DOI | Zbl
[25] Deferred Ces`aro statistical probability convergence and its applications to approximation theorems, J. Nonlinear Convex Anal., Volume 20 (2019), pp. 1777-1792 | Zbl
[26] A certain class of statistical probability convergence and its applications to approximation theorems, Appl. Anal. Discrete Math., Volume 14 (2020), pp. 579-598 | DOI | Zbl
[27] On a new type of generalized difference Ces`aro sequence spaces, Soochow J. Math., Volume 31 (2005), pp. 333-340 | Zbl
Cité par Sources :