Deferred Nörlund statistical convergence in probability, mean and distribution for sequences of random variables
Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 1, p. 41-50.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We introduce and study deferred Nörlund statistical convergence in probability, mean of order $r$, distribution and study the interrelation among them. Based upon the proposed method to illustrate the findings, we present new Korovkin-type theorems for the sequence of random variables via deferred Nörlund statistically convergence and present compelling examples to demonstrate the effectiveness of the results.
DOI : 10.22436/jnsa.016.01.04
Classification : 40A05, 40A30
Keywords: Probability convergence, Deferred Nörlund, Mean convergence, Distribution convergence, Statistical convergence

Raj, K. 1 ; Jasrotia, S. 1

1 School of Mathematics, Shri Mata Vaishno Devi University, Katra-182320, J \(\&\) K, India
@article{JNSA_2023_16_1_a3,
     author = {Raj, K. and Jasrotia, S.},
     title = {Deferred {N\"orlund} statistical convergence in probability, mean and distribution for sequences of random variables},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {41-50},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2023},
     doi = {10.22436/jnsa.016.01.04},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.04/}
}
TY  - JOUR
AU  - Raj, K.
AU  - Jasrotia, S.
TI  - Deferred Nörlund statistical convergence in probability, mean and distribution for sequences of random variables
JO  - Journal of nonlinear sciences and its applications
PY  - 2023
SP  - 41
EP  - 50
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.04/
DO  - 10.22436/jnsa.016.01.04
LA  - en
ID  - JNSA_2023_16_1_a3
ER  - 
%0 Journal Article
%A Raj, K.
%A Jasrotia, S.
%T Deferred Nörlund statistical convergence in probability, mean and distribution for sequences of random variables
%J Journal of nonlinear sciences and its applications
%D 2023
%P 41-50
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.04/
%R 10.22436/jnsa.016.01.04
%G en
%F JNSA_2023_16_1_a3
Raj, K.; Jasrotia, S. Deferred Nörlund statistical convergence in probability, mean and distribution for sequences of random variables. Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 1, p. 41-50. doi : 10.22436/jnsa.016.01.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.04/

[1] Altin, A.; Tas¸delen, O. Doˇgru and F. The generalization of Meyer-K¨onig and Zeller operators by generating functions, J. Math. Anal. Appl., Volume 312 (2005), pp. 181-194 | DOI | Zbl

[2] Dutta, H.; Jena, S. K. Paikray and B. B. On statistical deferred Ces`aro summability, Current Trends in Mathematical Analysis and Its Interdisciplinary Applications. Birkh¨auser, Cham, Volume 487 (2019), pp. 885-909 | Zbl | DOI

[3] Savas, A. Esi and E. On lacunary statistically convergent triple sequences in probabilistic normed space, Appl. Math. Inf. Sci., Volume 9 (2015), pp. 2529-2534 | DOI

[4] Et, M.; Sengul, P. Baliarsingh and H. Deferred statistical convergence and strongly deferred summable functions, AIP Conf. Proc., Volume 2183 (2019)

[5] Jemima, D. Eunice; Srinivasan, V. Norlund statistical convergence and Tauberian conditions for statistical convergence from statistical summability using Norlund means in non-Archimedean fields, Journal of Mathematics and Computer Science, Volume 24 (2022), pp. 299-307

[6] Fast, H. Sur la convergence statistique, Colloquium Mathematicae, Volume 2 (1951), pp. 241-244 | DOI | Zbl | EuDML

[7] Fridy, J. A. On statistical convergence, Analysis, Volume 5 (1985), pp. 301-313 | DOI

[8] Orhan, A. D. Gadjiev and C. Some approximation theorems via statistical convergence, Rocky Mountain Journal of Mathematics, Volume 32 (2002), pp. 129-138 | Zbl | DOI

[9] Ghosal, S. Statistical convergence for a sequence of random variables and limit theorems, Appl. Math. (Prague), Volume 58 (2013), pp. 423-437 | EuDML

[10] Hazarika, B.; Subramanian, N.; Mursaleen, and M. Korovkin-type approximation theorem for Bernstein operator of rough statistical convergence of triple sequences, Adv. Oper. Theory, Volume 5 (2020), pp. 324-335 | DOI | Zbl

[11] Jasrotia, S.; Raj, U. P. Singh and K. Applications of Statistical Convergence of order ( , + ) in difference sequence spaces of fuzzy numbers, J. Intell. Fuzzy Systems, Volume 40 (2021), pp. 4695-4703

[12] Jena, B. B.; Dutta, S. K. Paikray and H. On Various New Concepts of Statistical Convergence for Sequences of Random Variables via Deferred Ces`aro Mean, J. Math. Anal. Appl., Volume 487 (2020) | Zbl | DOI

[13] Khan, V. A.; Fatima, H.; Khan, M. D.; Ahamd, A. Spaces of neutrosophic -statistical convergence sequences and their properties, Journal of Mathematics and Computer Science, Volume 23 (2021), pp. 1-9

[14] Alamri, S. A. Mohiuddine and B. A. S. Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM, Volume 113 (2019), pp. 1955-1973 | Zbl | DOI

[15] Mohiuddine, S. A.; Mursaleen, A. Alotaibi and M. Statistical convergence of double sequences in locally solid Riesz spaces, Abstr. Appl. Anal., Volume 2012 (2012) | Zbl | DOI

[16] Mohiuddine, S. A.; Alotaibi, A.; Mursaleen, and M. Statistical summability (C, 1) and a Korovkin type approximation theorem, J. Inequal. Appl., Volume 2012 (2012), pp. 1-8 | DOI | Zbl

[17] Mursaleen, M.; Karakaya, V.; ursoy, M. Ert ¨ urk and F G¨ Weighted statistical convergence and its application to Korovkin type approximation theorem, Adv. Oper. Theory, Volume 218 (2012), pp. 9132-9137 | Zbl | DOI

[18] Mursaleen, M. Applied Summability Methods, Springer Briefs. Springer, New York, 2014 | DOI

[19] Choudhary, K. Raj and A. Relative modular uniform approximation by means of the power series method with applications, Rev. Un. Mat. Argentina, Volume 60 (2019), pp. 187-208 | DOI | Zbl

[20] Pandoh, K. Raj and S. Some vector-valued statistical convergent sequence spaces, Malaya J. Mat., Volume 3 (2015), pp. 161-167 | Zbl

[21] Tripathy, D. Rath and B. C. Matrix maps on sequence spaces associated with sets of integers, Indian J. Pure Appl. Math., Volume 27 (1996), pp. 197-206 | Zbl

[22] Schoenberg, I. J. The integrability of certain functions and related summability methods, The American Mathematical Monthly, Volume 66 (1959), pp. 361-775 | DOI | Zbl

[23] Srivastava, H. M.; Jena, B. B.; Misra, S. K. Paikray and U. K. Generalized equi-statistical convergence of the deferred N¨orlund summability and its applications to associated approximation theorems, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM, Volume 112 (2018), pp. 1487-1501 | DOI | Zbl

[24] Srivastava, H. M.; Jena, B. B.; Paikray, S. K. Statistical probability convergence via the deferred N¨orlund mean and its applications to approximation theorems, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM, Volume 114 (2020), pp. 1-14 | DOI | Zbl

[25] Srivastava, H. M.; Jena, B. B.; Paikray, S. K. Deferred Ces`aro statistical probability convergence and its applications to approximation theorems, J. Nonlinear Convex Anal., Volume 20 (2019), pp. 1777-1792 | Zbl

[26] Srivastava, H. M.; Paikray, B. B. Jena and S. K. A certain class of statistical probability convergence and its applications to approximation theorems, Appl. Anal. Discrete Math., Volume 14 (2020), pp. 579-598 | DOI | Zbl

[27] Tripathy, B.C.; Balakrushna, A. Esi and T. On a new type of generalized difference Ces`aro sequence spaces, Soochow J. Math., Volume 31 (2005), pp. 333-340 | Zbl

Cité par Sources :