Applications of statistical Riemann and Lebesgue integrability of sequence of functions
Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 1, p. 30-40.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In the present work, we propose to investigate statistical Riemann integrability, statistical Riemann summability, statistical Lebesgue integrability and statistical Lebesgue summability by means of deferred Nörlund and deferred Riesz mean. We discuss some fundamental theorems connecting these concepts with examples. As an application to our newly formed sequences, we introduce Korovkin-type approximation theorems with relevant example for positive linear operators by using Meyer-König and Zeller operators to exhibit the effectiveness of our findings.
DOI : 10.22436/jnsa.016.01.03
Classification : 40A05, 40A30, 40G15
Keywords: Statistical convergence, Riemann integral, Lebesgue integral, deferred Riesz, deferred Nörlund mean, Korovkin-type approximation theorem

Raj, K. 1 ; Sharma, S. 1

1 School of Mathematics, Shri Mata Vaishno Devi University, Katra-182320, J \(\&\) K, India
@article{JNSA_2023_16_1_a2,
     author = {Raj, K. and Sharma, S.},
     title = {Applications of statistical {Riemann} and {Lebesgue} integrability of sequence of functions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {30-40},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2023},
     doi = {10.22436/jnsa.016.01.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.03/}
}
TY  - JOUR
AU  - Raj, K.
AU  - Sharma, S.
TI  - Applications of statistical Riemann and Lebesgue integrability of sequence of functions
JO  - Journal of nonlinear sciences and its applications
PY  - 2023
SP  - 30
EP  - 40
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.03/
DO  - 10.22436/jnsa.016.01.03
LA  - en
ID  - JNSA_2023_16_1_a2
ER  - 
%0 Journal Article
%A Raj, K.
%A Sharma, S.
%T Applications of statistical Riemann and Lebesgue integrability of sequence of functions
%J Journal of nonlinear sciences and its applications
%D 2023
%P 30-40
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.03/
%R 10.22436/jnsa.016.01.03
%G en
%F JNSA_2023_16_1_a2
Raj, K.; Sharma, S. Applications of statistical Riemann and Lebesgue integrability of sequence of functions. Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 1, p. 30-40. doi : 10.22436/jnsa.016.01.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.03/

[1] Altın, A.; Do˘gru, O.; Tas¸delen, F. The generalization of Meyer-K¨onig and Zeller operators by generating functions, J. Math. Anal. Appl., Volume 312 (2005), pp. 181-194 | DOI | Zbl

[2] Connor, J. Two valued measures and summability, Analysis, Volume 10 (1990), pp. 373-385 | Zbl | DOI

[3] Demirci, K.; Dirik, F.; Yıldız, S. Deferred N¨orlund statistical relative uniform convergence and Korovkin-type approximation theorem, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat., Volume 70 (2021), pp. 279-289 | DOI | Zbl

[4] Fast, H. Sur La convergence statistique, Colloq. Math., Volume 2 (1951), pp. 241-244 | DOI | Zbl

[5] Fridy, J. A. On statistical convergent, Analysis, Volume 5 (1985), pp. 301-314 | DOI

[6] Haloi, R.; Sen, M.; Tripathy, B. C. Statistically lacunary convergence of generalized difference sequences in probabilistic normed spaces, Appl. Sci., Volume 21 (2019), pp. 107-118

[7] Jena, B. B.; Paikray, S. K.; Dutta, H. Statistically Riemann integrable and summable sequence of functions via deferred Ces`aro mean, Bull. Iran. Math. Soc., Volume 48 (2022), pp. 1293-1309 | Zbl | DOI

[8] Mohiuddine, S. A.; Alamri, B. A. S. Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM, Volume 113 (2019), pp. 1955-1973 | Zbl | DOI

[9] Mohiuddine, S. A.; Asiri, A.; Hazarika, B. Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems, Int. J. Gen. Syst., Volume 48 (2019), pp. 492-506 | DOI

[10] Mursaleen, M. -statistical convergence, Math. Slovaca, Volume 50 (2000), pp. 111-115

[11] Mursaleen, M.; Alotaibi, A. Statistical summability and approximation by de la Vall´ee-Poussin mean, Appl. Math. Lett., Volume 24 (2011), pp. 320-324 | Zbl | DOI

[12] Mursaleen, M.; Alotaibi, A. Korovkin type approximation theorems for functions of two variables through statistical A- summability, Adv. Differ. Equ., Volume 2012 (2012), pp. 1-10 | Zbl | DOI

[13] Nath, P. K.; Tripathy, B. C. Statistical convergence of complex uncertain sequences defined by Orlicz function, Proyecciones, Volume 39 (2020), pp. 301-315 | Zbl

[14] Raj, K.; Choudhary, A. Relative modular uniform approximation by means of the power series method with applications, Rev. Un. Mat. Argentina, Volume 60 (2019), pp. 187-208 | DOI | Zbl

[15] Saini, K.; Raj, K. Application of statistical convergence in complex uncertain sequence via deferred Reisz mean, Int. J. Uncertain. Fuzziness Knowlege-Based Syst., Volume 29 (2021), pp. 337-351 | DOI

[16] ˇSal´at, T. On statistically convergent sequences of real numbers, Math. Slovaca, Volume 30 (1980), pp. 139-150 | Zbl

[17] Saini, K.; Raj, K.; Mursaleen, M. Deferred Ces`aro and deferred Euler equi-statistical convergence and its applications to Korovkin-type approximation theorem, Int. J. Gen. Syst., Volume 50 (2021), pp. 567-579 | DOI

[18] Schoenberg, I. J. The integrability of certain function and related summability methods, Amer. Math. Monthly, Volume 66 (1959), pp. 361-375 | DOI | DOI

[19] Srivastava, H. M.; Et, M. Lacunary statistical convergence and strongly lacunary summable functions of order , Filomat, Volume 31 (2017), pp. 1573-1582 | DOI | Zbl

[20] Srivastava, H. M.; Jena, B. B.; Paikray, S. K. Statistical Riemann and Lebesgue integrable sequence of functions with Korovkin-type approximation theorems, Axioms, Volume 10 (2021), pp. 1-16 | DOI

[21] Srivastava, H. M.; Jena, B. B.; Paikray, S. K.; Misra, U. K. Generalized equi-statistical convergence of the deferred N¨orlund summability and its applications to associated approximation theorems, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM, Volume 112 (2018), pp. 1487-1501 | DOI

[22] Steinhaus, H. Sur la convergence ordinarie et la convergence asymptotique, Colloq. Math., Volume 2 (1951), pp. 73-74

Cité par Sources :