Voir la notice de l'article provenant de la source International Scientific Research Publications
Suanoom, C. 1 ; Yimer, S. E.  2 ; Gebrie, A. G. 2
@article{JNSA_2023_16_1_a0, author = {Suanoom, C. and Yimer, S. E. and Gebrie, A. G.}, title = {Two inertial {CQ-algorithms} for generalized split inverse problem of infinite family of demimetric mappings}, journal = {Journal of nonlinear sciences and its applications}, pages = {1-17}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2023}, doi = {10.22436/jnsa.016.01.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.01/} }
TY - JOUR AU - Suanoom, C. AU - Yimer, S. E. AU - Gebrie, A. G. TI - Two inertial CQ-algorithms for generalized split inverse problem of infinite family of demimetric mappings JO - Journal of nonlinear sciences and its applications PY - 2023 SP - 1 EP - 17 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.01/ DO - 10.22436/jnsa.016.01.01 LA - en ID - JNSA_2023_16_1_a0 ER -
%0 Journal Article %A Suanoom, C. %A Yimer, S. E. %A Gebrie, A. G. %T Two inertial CQ-algorithms for generalized split inverse problem of infinite family of demimetric mappings %J Journal of nonlinear sciences and its applications %D 2023 %P 1-17 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.01/ %R 10.22436/jnsa.016.01.01 %G en %F JNSA_2023_16_1_a0
Suanoom, C.; Yimer, S. E. ; Gebrie, A. G. Two inertial CQ-algorithms for generalized split inverse problem of infinite family of demimetric mappings. Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 1, p. 1-17. doi : 10.22436/jnsa.016.01.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.01/
[1] The split common fixed point problem of two infinite families of demicontractive mappings and the split common null point problem, Filomat, Volume 31 (2017), pp. 3859-3874 | DOI | Zbl
[2] Convex analysis and monotone operator theory in Hilbert spaces, Springer, New York, 2011 | DOI | Zbl
[3] Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., Volume 20 (1967), pp. 197-228 | DOI | Zbl
[4] A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse probl., Volume 20 (2004), pp. 103-120 | Zbl | DOI
[5] The split common null point problem, J. Nonlinear Convex Anal., Volume 13 (2012), pp. 759-775 | Zbl
[6] General method for solving the split common fixed point problem, J. Optim. Theory Appl., Volume 165 (2015), pp. 385-404 | Zbl | DOI
[7] On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints, Comput. Optim. Appl., Volume 51 (2012), pp. 1065-1088 | Zbl | DOI
[8] The multiple-sets split feasibility problem and its applications for inverse problems, Inverse problems, Volume 21 (2005), pp. 2071-2084 | Zbl | DOI
[9] Algorithms for the split variational inequality problem, Numer. Algorithms, Volume 59 (2012), pp. 301-323 | DOI
[10] The split common fixed point problem for directed operators, J. Convex Anal., Volume 16 (2009), pp. 587-600 | Zbl
[11] Modified block iterative algorithm for solving convex feasibility problems in Banach spaces, J. Inequal. Appl., Volume 2010 (2010), pp. 1-14 | Zbl | DOI
[12] Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., Volume 6 (2005), pp. 117-136
[13] General algorithms for split common fixed point problem of demicontractive mappings, Optimization, Volume 65 (2016), pp. 443-465 | Zbl | DOI
[14] A novel low-cost method for generalized split inverse problem of finite family of demimetric mappings, Comput. Appl. Math., Volume 40 (2021), pp. 1-18 | DOI | Zbl
[15] Weak and strong convergence adaptive algorithms for generalized split common fixed point problems, Optimization, Volume 71 (2022), pp. 3711-3736 | DOI | Zbl
[16] Proximal method of solving split system of minimization problem, J. Appl. Math. Comput., Volume 63 (2020), pp. 107-132 | DOI | Zbl
[17] Parallel proximal method of solving split system of fixed point set constraint minimization problems, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat., Volume 114 (2020), pp. 1-29 | Zbl | DOI
[18] The split equilibrium problem and its convergence algorithms, J. Inequal. Appl., Volume 2012 (2012), pp. 1-15 | DOI | Zbl
[19] Matrix p-norms are NP-hard to approximate if p 6= 1, 2,1, SIAM J. Matrix Anal. Appl., Volume 31 (2010), pp. 2802-2812 | DOI | Zbl
[20] On the Mann iteration process in a Hilbert space, J. Math. Anal. Appl., Volume 59 (1977), pp. 498-504 | DOI | Zbl
[21] Strong convergence theorems by hybrid methods for demimetric mappings in Banach spaces, J. Nonlinear Convex Anal., Volume 17 (2016), pp. 1333-1344 | Zbl
[22] Strong convergence theorems for 2-generalized hybrid mappings in Hilbert spaces, Nonlinear Anal., Volume 75 (2012), pp. 2166-2176 | DOI | Zbl
[23] Iterative algorithm for triple-hierarchical constrained nonconvex optimization problem and its application to network bandwidth allocation, SIAM J. Optim., Volume 22 (2012), pp. 862-878 | DOI | Zbl
[24] Fixed point optimization algorithms for distributed optimization in networked systems, SIAM J. Optim., Volume 23 (2013), pp. 1-26 | DOI | Zbl
[25] Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces, Taiwanese J. Math., Volume 14 (2010), pp. 2497-2511 | DOI | Zbl
[26] Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Analysis: Theory, Methods & Applications, Volume 64 (2006), pp. 2400-2411 | Zbl | DOI
[27] The split common fixed-point problem for demicontractive mappings, Inverse Probl., Volume 26 (2010), pp. 1-6 | Zbl | DOI
[28] A note on the split common fixed-point problem for quasi-nonexpansive operators, Nonlinear Anal., Volume 74 (2011), pp. 4083-4087 | Zbl | DOI
[29] Proximal and dynamical approaches to equilibrium problems, Ill-posed variational problems and regularization techniques (Trier, 1998), Volume 477 (1999), pp. 187-201 | Zbl | DOI
[30] Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl., Volume 329 (2007), pp. 336-346 | Zbl | DOI
[31] Some methods of speeding up the convergence of iteration methods, Ussr Comput. Math. Math. Phys., Volume 4 (1964), pp. 1-17 | Zbl
[32] An iterative method for an infinite family of nonexpansive mappings in Hilbert spaces, Bull. Malays. Math. Sci. Soc. (2), Volume 32 (2009), pp. 161-171 | Zbl | EuDML
[33] Multiple-set split feasibility problems for a finite family of demicontractive mappings in Hilbert spaces, Math. Inequal. Appl., Volume 16 (2013), pp. 1151-1157 | DOI | Zbl
[34] The split common fixed point problem and the shrinking projection method in Banach spaces, J. Convex Anal., Volume 24 (2017), pp. 1015-1028 | Zbl
[35] The split common null point problem and the shrinking projection method in Banach spaces, Optimization, Volume 65 (2016), pp. 281-287 | Zbl | DOI
[36] Several iterative algorithms for solving the split common fixed point problem of directed operators with applications, Optimization, Volume 65 (2016), pp. 53-65 | Zbl | DOI
[37] Cyclic algorithms for split feasibility problems in Hilbert spaces, Nonlinear Anal., Volume 74 (2011), pp. 4105-4111 | Zbl | DOI
[38] Several acceleration schemes for solving the multiple-sets split feasibility problem, Linear Algebra Appl., Volume 473 (2012), pp. 1648-1657 | Zbl | DOI
Cité par Sources :