Two inertial CQ-algorithms for generalized split inverse problem of infinite family of demimetric mappings
Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 1, p. 1-17.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, two new inertial CQ-algorithms with strong convergence results are constructed to approximate the solution of the generalized split common fixed point problem: given as a task of finding a point that belongs to the intersection of an infinite family of fixed point sets of demimetric mappings such that its image under an infinite number of linear transformations belongs to the intersection of another infinite family of fixed point sets of demimetric mappings in the image space. The algorithms are established based on the CQ-projection method with inertial effect and step-size selection technique so that the implementation of the proposed algorithms does not need any prior information about the operator norms. The proposed methods improve, complement, and generalize many of the important results in the literature.
DOI : 10.22436/jnsa.016.01.01
Classification : 90C25, 47N10, 65J15, 47J25
Keywords: Split common fixed-point problem, \(\kappa\)-demimetric mapping, inertial term, CQ-algorithm, Hilbert space, strong convergence

Suanoom, C. 1 ; Yimer, S. E.  2 ; Gebrie, A. G. 2

1 Program of Mathematics, Science and Applied Science center, Faculty of Science and Technology, Kamphaeng Phet Rajabhat, Kamphaeng Phet 62000, Thailand
2 Department of Mathematics, College of Computational and Natural Science, Debre Berhan University, Debre Berhan, Ethiopia
@article{JNSA_2023_16_1_a0,
     author = {Suanoom, C. and Yimer, S. E.  and Gebrie, A. G.},
     title = {Two inertial {CQ-algorithms} for generalized split inverse problem of infinite family of demimetric mappings},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {1-17},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2023},
     doi = {10.22436/jnsa.016.01.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.01/}
}
TY  - JOUR
AU  - Suanoom, C.
AU  - Yimer, S. E. 
AU  - Gebrie, A. G.
TI  - Two inertial CQ-algorithms for generalized split inverse problem of infinite family of demimetric mappings
JO  - Journal of nonlinear sciences and its applications
PY  - 2023
SP  - 1
EP  - 17
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.01/
DO  - 10.22436/jnsa.016.01.01
LA  - en
ID  - JNSA_2023_16_1_a0
ER  - 
%0 Journal Article
%A Suanoom, C.
%A Yimer, S. E. 
%A Gebrie, A. G.
%T Two inertial CQ-algorithms for generalized split inverse problem of infinite family of demimetric mappings
%J Journal of nonlinear sciences and its applications
%D 2023
%P 1-17
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.01/
%R 10.22436/jnsa.016.01.01
%G en
%F JNSA_2023_16_1_a0
Suanoom, C.; Yimer, S. E. ; Gebrie, A. G. Two inertial CQ-algorithms for generalized split inverse problem of infinite family of demimetric mappings. Journal of nonlinear sciences and its applications, Tome 16 (2023) no. 1, p. 1-17. doi : 10.22436/jnsa.016.01.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.016.01.01/

[1] Abkar, A.; Shahrosvand, E. The split common fixed point problem of two infinite families of demicontractive mappings and the split common null point problem, Filomat, Volume 31 (2017), pp. 3859-3874 | DOI | Zbl

[2] Bauschke, H. H.; Combettes, P. L. Convex analysis and monotone operator theory in Hilbert spaces, Springer, New York, 2011 | DOI | Zbl

[3] Browder, F. E.; Petryshyn, W. V. Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., Volume 20 (1967), pp. 197-228 | DOI | Zbl

[4] Byrne, C. A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse probl., Volume 20 (2004), pp. 103-120 | Zbl | DOI

[5] Byrne, C.; Censor, Y.; Gibali, A.; Reich, S. The split common null point problem, J. Nonlinear Convex Anal., Volume 13 (2012), pp. 759-775 | Zbl

[6] Cegielski, A. General method for solving the split common fixed point problem, J. Optim. Theory Appl., Volume 165 (2015), pp. 385-404 | Zbl | DOI

[7] Censor, Y.; Chen, W.; Combettes, P. L.; Davidi, R.; Herman, G. T. On the effectiveness of projection methods for convex feasibility problems with linear inequality constraints, Comput. Optim. Appl., Volume 51 (2012), pp. 1065-1088 | Zbl | DOI

[8] Censor, Y.; Elfving, T.; Kopf, N.; Bortfeld, T. The multiple-sets split feasibility problem and its applications for inverse problems, Inverse problems, Volume 21 (2005), pp. 2071-2084 | Zbl | DOI

[9] Censor, Y.; Gibali, A.; Reich, S. Algorithms for the split variational inequality problem, Numer. Algorithms, Volume 59 (2012), pp. 301-323 | DOI

[10] Censor, Y.; Segal, A. The split common fixed point problem for directed operators, J. Convex Anal., Volume 16 (2009), pp. 587-600 | Zbl

[11] Chang, S.-S.; Kim, J. K.; Wang, X. R. Modified block iterative algorithm for solving convex feasibility problems in Banach spaces, J. Inequal. Appl., Volume 2010 (2010), pp. 1-14 | Zbl | DOI

[12] Combettes, P. L.; Hirstoaga, S. A. Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., Volume 6 (2005), pp. 117-136

[13] Eslamian, M. General algorithms for split common fixed point problem of demicontractive mappings, Optimization, Volume 65 (2016), pp. 443-465 | Zbl | DOI

[14] Gebrie, A. G. A novel low-cost method for generalized split inverse problem of finite family of demimetric mappings, Comput. Appl. Math., Volume 40 (2021), pp. 1-18 | DOI | Zbl

[15] Gebrie, A. G. Weak and strong convergence adaptive algorithms for generalized split common fixed point problems, Optimization, Volume 71 (2022), pp. 3711-3736 | DOI | Zbl

[16] Gebrie, A. G.; R.Wangkeeree Proximal method of solving split system of minimization problem, J. Appl. Math. Comput., Volume 63 (2020), pp. 107-132 | DOI | Zbl

[17] Gebrie, A. G.; Wangkeeree, R. Parallel proximal method of solving split system of fixed point set constraint minimization problems, Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat., Volume 114 (2020), pp. 1-29 | Zbl | DOI

[18] He, Z. The split equilibrium problem and its convergence algorithms, J. Inequal. Appl., Volume 2012 (2012), pp. 1-15 | DOI | Zbl

[19] Hendrickx, J. M.; Olshevsky, A. Matrix p-norms are NP-hard to approximate if p 6= 1, 2,1, SIAM J. Matrix Anal. Appl., Volume 31 (2010), pp. 2802-2812 | DOI | Zbl

[20] Hicks, T. L.; Kubicek, J. D. On the Mann iteration process in a Hilbert space, J. Math. Anal. Appl., Volume 59 (1977), pp. 498-504 | DOI | Zbl

[21] Hojo, M.; Takahashi, W. Strong convergence theorems by hybrid methods for demimetric mappings in Banach spaces, J. Nonlinear Convex Anal., Volume 17 (2016), pp. 1333-1344 | Zbl

[22] Hojo, M.; Takahashi, W.; Termwuttipong, I. Strong convergence theorems for 2-generalized hybrid mappings in Hilbert spaces, Nonlinear Anal., Volume 75 (2012), pp. 2166-2176 | DOI | Zbl

[23] Iiduka, H. Iterative algorithm for triple-hierarchical constrained nonconvex optimization problem and its application to network bandwidth allocation, SIAM J. Optim., Volume 22 (2012), pp. 862-878 | DOI | Zbl

[24] Iiduka, H. Fixed point optimization algorithms for distributed optimization in networked systems, SIAM J. Optim., Volume 23 (2013), pp. 1-26 | DOI | Zbl

[25] Kocourek, P.; Takashi, W.; Yao, J.-C. Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert spaces, Taiwanese J. Math., Volume 14 (2010), pp. 2497-2511 | DOI | Zbl

[26] Martinez-Yanes, C.; Xu, H.-K. Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Analysis: Theory, Methods & Applications, Volume 64 (2006), pp. 2400-2411 | Zbl | DOI

[27] Moudafi, A. The split common fixed-point problem for demicontractive mappings, Inverse Probl., Volume 26 (2010), pp. 1-6 | Zbl | DOI

[28] Moudafi, A. A note on the split common fixed-point problem for quasi-nonexpansive operators, Nonlinear Anal., Volume 74 (2011), pp. 4083-4087 | Zbl | DOI

[29] Moudafi, A.; Th´era, M. Proximal and dynamical approaches to equilibrium problems, Ill-posed variational problems and regularization techniques (Trier, 1998), Volume 477 (1999), pp. 187-201 | Zbl | DOI

[30] Marino, G.; Xu, H.-K. Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces, J. Math. Anal. Appl., Volume 329 (2007), pp. 336-346 | Zbl | DOI

[31] Polyak, B. T. Some methods of speeding up the convergence of iteration methods, Ussr Comput. Math. Math. Phys., Volume 4 (1964), pp. 1-17 | Zbl

[32] Qin, X.; Cho, Y. J.; Kang, S. M. An iterative method for an infinite family of nonexpansive mappings in Hilbert spaces, Bull. Malays. Math. Sci. Soc. (2), Volume 32 (2009), pp. 161-171 | Zbl | EuDML

[33] Qin, L.-J.; Wang, G. Multiple-set split feasibility problems for a finite family of demicontractive mappings in Hilbert spaces, Math. Inequal. Appl., Volume 16 (2013), pp. 1151-1157 | DOI | Zbl

[34] Takahashi, W. The split common fixed point problem and the shrinking projection method in Banach spaces, J. Convex Anal., Volume 24 (2017), pp. 1015-1028 | Zbl

[35] Takahashi, S.; Takahashi, W. The split common null point problem and the shrinking projection method in Banach spaces, Optimization, Volume 65 (2016), pp. 281-287 | Zbl | DOI

[36] Tang, Y.-C.; Liu, L.-W. Several iterative algorithms for solving the split common fixed point problem of directed operators with applications, Optimization, Volume 65 (2016), pp. 53-65 | Zbl | DOI

[37] Wang, F.; Xu, H.-K. Cyclic algorithms for split feasibility problems in Hilbert spaces, Nonlinear Anal., Volume 74 (2011), pp. 4105-4111 | Zbl | DOI

[38] Zhaoa, J.; Yang, Q. Several acceleration schemes for solving the multiple-sets split feasibility problem, Linear Algebra Appl., Volume 473 (2012), pp. 1648-1657 | Zbl | DOI

Cité par Sources :