On the one spectral relation for the analytic function of operator
Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 4, p. 301-307.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this work, some estimates for the difference number between the operator norm and the spectral radius of analytic functions of linear bounded Hilbert space operators via difference numbers of powers of corresponding Hilbert space operators have been obtained. Firstly, these evaluations for the polynomial functions of the linear bounded Hilbert space operator have been established. Using previous results, this question was later investigated for the exponential, sine, and cosine functions of a given operator. Finally, starting from obtained results, this subject for the analytic functions of the linear bounded Hilbert space operator has been generalized.
DOI : 10.22436/jnsa.015.04.05
Classification : 47A10, 47A30, 47A60, 47B02
Keywords: Operator norm, spectral radius, analytic functions of operator

Ismailov, Z. I.  1 ; Cevik, E. O.  2

1 Department of Mathematics, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey
2 Department of Computer Engineering, Faculty of Engineering and Architecture, Avrasya University, Trabzon, Turkey
@article{JNSA_2022_15_4_a4,
     author = {Ismailov, Z. I.  and Cevik, E. O. },
     title = {On the one spectral relation for the analytic function of operator},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {301-307},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2022},
     doi = {10.22436/jnsa.015.04.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.04.05/}
}
TY  - JOUR
AU  - Ismailov, Z. I. 
AU  - Cevik, E. O. 
TI  - On the one spectral relation for the analytic function of operator
JO  - Journal of nonlinear sciences and its applications
PY  - 2022
SP  - 301
EP  - 307
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.04.05/
DO  - 10.22436/jnsa.015.04.05
LA  - en
ID  - JNSA_2022_15_4_a4
ER  - 
%0 Journal Article
%A Ismailov, Z. I. 
%A Cevik, E. O. 
%T On the one spectral relation for the analytic function of operator
%J Journal of nonlinear sciences and its applications
%D 2022
%P 301-307
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.04.05/
%R 10.22436/jnsa.015.04.05
%G en
%F JNSA_2022_15_4_a4
Ismailov, Z. I. ; Cevik, E. O. . On the one spectral relation for the analytic function of operator. Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 4, p. 301-307. doi : 10.22436/jnsa.015.04.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.04.05/

[1] Abu-Omar, A.; Kittaneh, F. Estimates for the numerical radius and spectral radius of the Frobenius companion matrix and bounds for the zeros of polynomials, Ann. Funct. Anal., Volume 5 (2014), pp. 56-62 | DOI | Zbl

[2] Abu-Omar, A.; Kittaneh, F. Notes on some spectral radius and numerical radius inequalities, Studia Math., Volume 227 (2015), pp. 97-109 | DOI | Zbl

[3] Berezansky, Y. M.; Sheftel, Z. G.; Us, G. H. Functional Analysis, Birkh¨auser Verlag, Basel, 1966

[4] Demuth, M. Mathematical aspect of physics with non-selfadjoint operators: List of open problem, American Institute of Mathematics Workshop, Volume 8 (2015), pp. 1-12

[5] Dosi, A. Functional calculus on Noetherian schemes, C. R. Math. Acad. Sci. Paris, Volume 353 (2015), pp. 57-61 | DOI | Zbl

[6] Dosi, A. The spectrum of a module along scheme morphism and multi-operator functional calculus, Mosc. Math. J., Volume 21 (2021), pp. 287-323 | DOI | Zbl

[7] Gelfand, I. M. Normierte ringe, (German) Rec. Math. [Mat. Sbornik] N. S., Volume 9 (1941), pp. 3-24 | Zbl

[8] Kittaneh, F. Spectral radius inequalities for Hilbert space operators, Proc. Amer. Math. Soc., Volume 134 (2006), pp. 385-390 | Zbl | DOI

[9] Zima, M. A theorem on the spectral radius of the sum of two operators and its application, Bull. Austral. Math. Soc., Volume 48 (1993), pp. 427-434 | DOI | Zbl

[10] Zima, M. On the local spectral radius in partially ordered Banach spaces, Czechoslovak Math. J., Volume 49 (1999), pp. 835-841 | DOI | Zbl

[11] Zima, M. On the local spectral radius of positive operators, Proc. Amer. Math. Soc., Volume 131 (2003), pp. 845-850 | DOI | Zbl

[12] Zima, M. Spectral radius inequalities for positive commutators, Czechoslovak Math. J., Volume 64 (2014), pp. 1-10 | Zbl | DOI

Cité par Sources :