Voir la notice de l'article provenant de la source International Scientific Research Publications
Ismailov, Z. I.  1 ; Cevik, E. O.  2
@article{JNSA_2022_15_4_a4, author = {Ismailov, Z. I. and Cevik, E. O. }, title = {On the one spectral relation for the analytic function of operator}, journal = {Journal of nonlinear sciences and its applications}, pages = {301-307}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2022}, doi = {10.22436/jnsa.015.04.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.04.05/} }
TY - JOUR AU - Ismailov, Z. I. AU - Cevik, E. O. TI - On the one spectral relation for the analytic function of operator JO - Journal of nonlinear sciences and its applications PY - 2022 SP - 301 EP - 307 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.04.05/ DO - 10.22436/jnsa.015.04.05 LA - en ID - JNSA_2022_15_4_a4 ER -
%0 Journal Article %A Ismailov, Z. I. %A Cevik, E. O. %T On the one spectral relation for the analytic function of operator %J Journal of nonlinear sciences and its applications %D 2022 %P 301-307 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.04.05/ %R 10.22436/jnsa.015.04.05 %G en %F JNSA_2022_15_4_a4
Ismailov, Z. I. ; Cevik, E. O. . On the one spectral relation for the analytic function of operator. Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 4, p. 301-307. doi : 10.22436/jnsa.015.04.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.04.05/
[1] Estimates for the numerical radius and spectral radius of the Frobenius companion matrix and bounds for the zeros of polynomials, Ann. Funct. Anal., Volume 5 (2014), pp. 56-62 | DOI | Zbl
[2] Notes on some spectral radius and numerical radius inequalities, Studia Math., Volume 227 (2015), pp. 97-109 | DOI | Zbl
[3] Functional Analysis, Birkh¨auser Verlag, Basel, 1966
[4] Mathematical aspect of physics with non-selfadjoint operators: List of open problem, American Institute of Mathematics Workshop, Volume 8 (2015), pp. 1-12
[5] Functional calculus on Noetherian schemes, C. R. Math. Acad. Sci. Paris, Volume 353 (2015), pp. 57-61 | DOI | Zbl
[6] The spectrum of a module along scheme morphism and multi-operator functional calculus, Mosc. Math. J., Volume 21 (2021), pp. 287-323 | DOI | Zbl
[7] Normierte ringe, (German) Rec. Math. [Mat. Sbornik] N. S., Volume 9 (1941), pp. 3-24 | Zbl
[8] Spectral radius inequalities for Hilbert space operators, Proc. Amer. Math. Soc., Volume 134 (2006), pp. 385-390 | Zbl | DOI
[9] A theorem on the spectral radius of the sum of two operators and its application, Bull. Austral. Math. Soc., Volume 48 (1993), pp. 427-434 | DOI | Zbl
[10] On the local spectral radius in partially ordered Banach spaces, Czechoslovak Math. J., Volume 49 (1999), pp. 835-841 | DOI | Zbl
[11] On the local spectral radius of positive operators, Proc. Amer. Math. Soc., Volume 131 (2003), pp. 845-850 | DOI | Zbl
[12] Spectral radius inequalities for positive commutators, Czechoslovak Math. J., Volume 64 (2014), pp. 1-10 | Zbl | DOI
Cité par Sources :