Voir la notice de l'article provenant de la source International Scientific Research Publications
Saleh, W. 1
@article{JNSA_2022_15_4_a2, author = {Saleh, W.}, title = {New {Hadamard-type} inequality for new class of geodesic convex functions}, journal = {Journal of nonlinear sciences and its applications}, pages = {276-283}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2022}, doi = {10.22436/jnsa.015.04.03}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.04.03/} }
TY - JOUR AU - Saleh, W. TI - New Hadamard-type inequality for new class of geodesic convex functions JO - Journal of nonlinear sciences and its applications PY - 2022 SP - 276 EP - 283 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.04.03/ DO - 10.22436/jnsa.015.04.03 LA - en ID - JNSA_2022_15_4_a2 ER -
%0 Journal Article %A Saleh, W. %T New Hadamard-type inequality for new class of geodesic convex functions %J Journal of nonlinear sciences and its applications %D 2022 %P 276-283 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.04.03/ %R 10.22436/jnsa.015.04.03 %G en %F JNSA_2022_15_4_a2
Saleh, W. New Hadamard-type inequality for new class of geodesic convex functions. Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 4, p. 276-283. doi : 10.22436/jnsa.015.04.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.04.03/
[1] Nonlinear integrals and Hadamard-type inequalities, Soft Comput., Volume 22 (2018), pp. 2843-2849
[2] Hadamard integral inequality for the class of geodesic convex functions, Appl. Math. Inf. Sci., Volume 15 (2021), pp. 539-546
[3] Inequalities via convex functions, Int. J. Math. Math. Sci., Volume 22 (1999), pp. 543-546
[4] Some properties of semi-$E$-convex functions, J. Math. Anal. Appl., Volume 275 (2002), pp. 251-262 | DOI | Zbl
[5] On the E-epigraph of an E-convex functions, J. Optim. Theory Appl., Volume 129 (2006), pp. 341-348
[6] Nonlinear programming with E-preinvex and local E-preinvex functions, European J. Oper. Res., Volume 192 (2009), pp. 737-743
[7] A Simple Way to Prove the Characterization of Differentiable Quasiconvex Functions, Appl. Math., Volume 5 (2014), pp. 12-26
[8] Fast alternating linearization methods for minimizing the sum of two convex functions, Math. Program., Volume 141 (2013), pp. 349-382
[9] Some properties of geodesic semi-$E$-convex functions, Nonlinear Anal., Volume 74 (2011), pp. 6805-6813 | Zbl | DOI
[10] On geodesic $E$-convex sets, geodesic $E$-convex functions and $E$-epigraphs, J. Optim. Theory Appl., Volume 155 (2012), pp. 239-251 | DOI | Zbl
[11] On Geodesic Strongly E-convex Sets and Geodesic Strongly E-convex Functions, J. Inequal. Appl., Volume 2015 (2015), pp. 1-10
[12] On geodesic semi strongly E-convex functions, J. Interdiscip. Math., Volume 19 (2016), pp. 1039-1055
[13] On properties of geodesic semilocal E-preinvex functions, .J. Inequal. Appl., Volume 2018 (2018), pp. 1-13
[14] Fuzzy preinvex functions, Fuzzy sets and systems, Volume 64 (1994), pp. 95-104
[15] On some inequalities for relative semi-convex functions, J. Inequal. Appl., Volume 2013 (2013), pp. 1-16
[16] Generalized convexity and integral inequalities, Appl. Math. Inf. Sci., Volume 9 (2015), pp. 233-243
[17] Null-additive set functions, Springer, Berlin, 1995
[18] Convex functions, partial orderings, and statistical applications, Academic Press, Boston, 1992
[19] The fuzzy integral, J. Math. Anal. Appl., Volume 75 (1980), pp. 562-570
[20] Smooth Nonlinear Optimization in $\mathbb{R}^{n}$, Kluwer Academic Publishers, Dordrecht, 1977
[21] Some Properties of Geodesic Strongly Eb-vex Functions, Int. J. Anal. Appl., Volume 17 (2019), pp. 388-395
[22] Theory of fuzzy integrals and its applications,, Doctoral Thesis, Tokyo Institute of technology, 1974
[23] Some properties of $E$-convex functions, Appl. Math. Lett., Volume 18 (2005), pp. 1074-1080 | Zbl | DOI
[24] Convex Funcions and Optimization Methods on Riemannian Manifolds, Kluwer Academic Publishers, Dordrecht, 1994
[25] Hadamard integral inequality for the class of semi-harmonically convex functions, Asian-Eur. J. Math., Volume 15 (2022), pp. 1-21
[26] Fuzzy measure theory, Plenum Press, New York, 1992
[27] On E-convex set, E-convex functions and E-convex programming, J. Optim. Theory Appl., Volume 109 (2001), pp. 699-703
[28] $E$-convex sets, $E$-convex functions, and $E$-convex programming, J. Optim. Theory Appl., Volume 102 (1999), pp. 439-450 | DOI | Zbl
[29] Strongly $E$-convex sets and strongly $E$-convex functions, J. Interdiscip. Math., Volume 8 (2005), pp. 107-117 | Zbl | DOI
[30] Semi strongly E-convex functions, J. Math. Stat., Volume 1 (2005), pp. 51-57
[31] Characterization of efficient solutions for multi-objective optimization problems involving semistrong and generalized semi-strong E-convexity, Acta Math. Sci. Ser. B (Engl. Ed.), Volume 28 (2008), pp. 7-16
Cité par Sources :