Voir la notice de l'article provenant de la source International Scientific Research Publications
Amtout, T. 1 ; Er-Riani, M. 1 ; El Jarroudi, M. 1
@article{JNSA_2022_15_4_a1, author = {Amtout, T. and Er-Riani, M. and El Jarroudi, M.}, title = {Lie group classification of the nonlinear transmission line model and exact traveling wave solutions}, journal = {Journal of nonlinear sciences and its applications}, pages = {267-275}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2022}, doi = {10.22436/jnsa.015.04.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.04.02/} }
TY - JOUR AU - Amtout, T. AU - Er-Riani, M. AU - El Jarroudi, M. TI - Lie group classification of the nonlinear transmission line model and exact traveling wave solutions JO - Journal of nonlinear sciences and its applications PY - 2022 SP - 267 EP - 275 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.04.02/ DO - 10.22436/jnsa.015.04.02 LA - en ID - JNSA_2022_15_4_a1 ER -
%0 Journal Article %A Amtout, T. %A Er-Riani, M. %A El Jarroudi, M. %T Lie group classification of the nonlinear transmission line model and exact traveling wave solutions %J Journal of nonlinear sciences and its applications %D 2022 %P 267-275 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.04.02/ %R 10.22436/jnsa.015.04.02 %G en %F JNSA_2022_15_4_a1
Amtout, T.; Er-Riani, M.; El Jarroudi, M. Lie group classification of the nonlinear transmission line model and exact traveling wave solutions. Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 4, p. 267-275. doi : 10.22436/jnsa.015.04.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.04.02/
[1] Nonlinear Transmission Lines for Pulse Shaping in Silicon, IEEE J. Solid-State Circuits, Volume 40 (2005), pp. 744-752
[2] Applications of Lie Symmetry Analysis to the Natural Convection Flow of Boundary Layer Past an Inclined Surface, Adv. Intell. Syst. Comput., Volume 1418 (2022), pp. 1053-1066
[3] Lie Symmetry Analysis of a Class of Thermal Conduction Models, Appl. Math. Sci., Volume 13 (2019), pp. 1061-1067
[4] Symmetries and differential equations, Springer-Verlag, New York, 1989
[5] Lie Symmetry Analysis and traveling wave solutions of equal width wave equation, Proyecciones, Volume 39 (2020), pp. 179-198
[6] Exact and soliton solutions to nonlinear transmission line model, Nonlinear Dyn., Volume 87 (2017), pp. 767-773
[7] Explicit Solution of General Fourth Order Time Fractional KdV Equation by Lie Symmetry Analysis, AIP Conference Proceedings, Volume 2253 (2020), pp. 1-14
[8] Conservation laws and exact series solution of fractional-order Hirota-Satsuma-coupled Korteveg-de Vries system by symmetry analysis, Math. Methods Appl. Sci., Volume 44 (2021), pp. 14356-14370
[9] CRC Handbook of Lie Group Analysis of Differential Equations, CRC Press, Boca Raton, 1995
[10] Competent closed form soliton solutions to the nonlinear transmission and the low-pass electrical transmission lines, Eur. Phys. J. Plus, Volume 135 (2020), pp. 1-20 | DOI
[11] Multiple soliton solutions of the nonlinear partial differential equations describing the wave propagation in nonlinear low-pass electrical transmission lines, Chaos Solitons Fractals, Volume 115 (2018), pp. 62-76
[12] Solitary wave solutions of nonlinear wave equation, Amer. J. Phys., Volume 60 (1992), pp. 650-654
[13] Analytical study for the ability of nonlinear transmission lines to generate solitons, Chaos Solitons Fractals, Volume 39 (2009), pp. 2125-2132
[14] Application of Lie Group to Differential Equation, Springer-Verlag, New York, 1986
[15] Group Analysis of Differential Equations, Academic Press, New York, 1982
[16] A Simple Introduction to the Transmission-Line Modeling, IEEE Trans. Circuits and Systems, Volume 37 (1990), pp. 991-999
[17] The tanh-method for traveling wave solutions of nonlinear equations, Appl. Math. Comput., Volume 154 (2004), pp. 713-723
[18] Analytic study of the fifth order integrable nonlinear evolution equations by using the tanh method, Appl. Math. Comput., Volume 174 (2006), pp. 289-299
[19] The tanh method for travelling wave solutions to the Zhiber-Shabat equation and other related equations, Commun. Nonlinear Sci. Numer. Simul., Volume 13 (2008), pp. 584-592
Cité par Sources :