Hermite-Hadamard type integral inequalities for geometric-arithmetically $(s,m)$ convex functions
Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 4, p. 253-266.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we introduce a definition of geometric-arithmetically $(s,m)$ convex function and give some new inequalities of Hermite-Hadamard type for the geometric-arithmetically $(s,m)$ convex function. Finally, we discuss applications of these inequalities to special means.
DOI : 10.22436/jnsa.015.04.01
Classification : 26D15, 26A51
Keywords: Integral inequality, Hermite-Hadamard type integral inequality, geometric-arithmetically \((s,m)\) convex function, Holder inequality

Cheng, X.-Li.  1 ; Zuo, H.-W.  2 ; Hua, Z.-Q.  3

1 Department of Mathematics, Jilin Normal University, Siping, 136000, China
2 School of Mathematical Sciences, Capital Normal University, Beijing, 10048, China
3 College of Mathematics, Inner Mongolia University for Nationalities, Tongliao, 028043, China
@article{JNSA_2022_15_4_a0,
     author = {Cheng, X.-Li.  and Zuo, H.-W.  and Hua, Z.-Q. },
     title = {Hermite-Hadamard type integral inequalities for geometric-arithmetically \((s,m)\) convex functions},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {253-266},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2022},
     doi = {10.22436/jnsa.015.04.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.04.01/}
}
TY  - JOUR
AU  - Cheng, X.-Li. 
AU  - Zuo, H.-W. 
AU  - Hua, Z.-Q. 
TI  - Hermite-Hadamard type integral inequalities for geometric-arithmetically \((s,m)\) convex functions
JO  - Journal of nonlinear sciences and its applications
PY  - 2022
SP  - 253
EP  - 266
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.04.01/
DO  - 10.22436/jnsa.015.04.01
LA  - en
ID  - JNSA_2022_15_4_a0
ER  - 
%0 Journal Article
%A Cheng, X.-Li. 
%A Zuo, H.-W. 
%A Hua, Z.-Q. 
%T Hermite-Hadamard type integral inequalities for geometric-arithmetically \((s,m)\) convex functions
%J Journal of nonlinear sciences and its applications
%D 2022
%P 253-266
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.04.01/
%R 10.22436/jnsa.015.04.01
%G en
%F JNSA_2022_15_4_a0
Cheng, X.-Li. ; Zuo, H.-W. ; Hua, Z.-Q. . Hermite-Hadamard type integral inequalities for geometric-arithmetically \((s,m)\) convex functions. Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 4, p. 253-266. doi : 10.22436/jnsa.015.04.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.04.01/

[1] Avci, M.; Kavurmaci, H.; Ozdemir, M. E. New inequalities of Hermite–Hadamard type via s-convex functions in the second sense with applications, Appl. Math. Comput., Volume 217 (2011), pp. 5171-5176

[2] Bai, R. F.; Qi, F.; Xi, B. Y. Hermite-Hadamard type inequalities for the $m$-and $(\alpha, m)$-logarithmically convex functions, Filomat, Volume 27 (2013), pp. 1-7

[3] Chen, P.; Cheung, W.-S. Hermite-Hadamard inequality for semiconvex functions of rate $(k_1, k_2)$ on the coordinates and optimal mass transportation, Rocky Mountain J. Math., Volume 55 (2020), pp. 2011-2021

[4] Chu, H. H.; Rashid, S.; Hammouch, Z.; Chu, Y. M. New fractional estimates for Hermite-Hadamard-Mercer’s type inequalities, Alex. Eng. J., Volume 59 (2020), pp. 3079-3089

[5] Hassani, M.; Amlashi, M. Eghbali More on the Hermite-Hadamard inequality, Int. J. Nonlinear Anal. Appl., Volume 12 (2021), pp. 2153-2159

[6] Jiang, W.-D.; Liu, D.-W.; Hua, Y.; Qi, F. Generalizations of Hermite–Hadamard inequality to n-time differentiable functions which are s-convex in the second sense, Analysis (Munich), Volume 32 (2012), pp. 209-220

[7] Kashuri, A.; Liko, R. Some new Hermite-Hadamard type inequalities and their applications, Studia Sci. Math. Hungar., Volume 56 (2019), pp. 103-142

[8] Li, Y. J.; Du, T. S. On Simpson type inequalities for functions whose derivatives are extended $(s, m)$-GA-convex functions, Pure. Appl. Math., China, Volume 31 (2015), pp. 487-497

[9] Niculescu, C. P. Convexity according to the geometric mean, Math. Inequal. Appl., Volume 3 (2000), pp. 155-167

[10] Prabseang, J.; Kamsing, N.; Jessada, T. Quantum Hermite-Hadamard inequalities for double integral and q-differentiable convex functions, J. Math. Inequal., Volume 13 (2019), pp. 675-686

[11] Qi, H. X.; Yussouf, M.; Mehmood, S.; Chu, Y.-M.; Farid, G. Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity, AIMS Math., Volume 5 (2020), pp. 6030-6042

[12] Qu, M. H.; Liu, W. J.; Park, J. Some new Hermite-Hadamard-type inequalities for geometric-arithmetically s-convex functions, WSEAS Trans. Math., Volume 13 (2014), pp. 452-461

[13] Sarikaya, M. Z.; Kiris, M. E. Some new inequalities of Hermite-Hadamard type for s-convex functions, Miskolc Math. Notes, Volume 16 (2015), pp. 491-501

[14] Sezer, S. The Hermite-Hadamard inequality for s-Convex functions in the third sense, AIMS Math., Volume 6 (2021), pp. 7719-7732

[15] Shuang, Y.; Yin, H.-P.; Qi, F. Hermite-hadamard type integral inequalities for geometric-arithmetically s-convex functions, Analysis (Munich), Volume 33 (2013), pp. 197-208

[16] Wang, S.-H.; Xi, B.-Y.; Qi, F. Some new inequalities of hermite-hadamard type for n-time differentiable functions which are m-convex, Analysis (Munich), Volume 32 (2012), pp. 247-262

[17] Xi, B.-Y.; Qi, F. Some Hermite-Hadamard Type Inequalities for Differentiable Convex Functions and Applications, Hacet. J. Math. Stat., Volume 42 (2013), pp. 243-257

[18] Yin, H. P.; Wang, J. Y.; Guo, B. N. Integral inequalities of Hermite-Hadamard type for extended $(s, m)$-GA-$\epsilon$-convex functions, Ital. J. Pure Appl. Math., Volume 2020 (2020), pp. 547-557

[19] Zabandan, G. An extension and refinement of Hermite-Hadamard inequality and related results, Int. J. Nonlinear Anal., Volume 11 (2020), pp. 379-390

[20] Zhang, T.-Y.; Ji, A.-P.; Qi, F. Some inequalities of Hermite-Hadamard type for GA-convex functions with applications to means, Matematiche (Catania), Volume 68 (2013), pp. 229-239

[21] Zhao, D.; An, T. Q.; Ye, G. J.; Liu, W. New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions, J. Inequal. Appl., Volume 2018 (2018), pp. 1-14

[22] Zhou, S.-S.; Rashid, S.; Noor, M. A.; Noor, K. I.; Safdar, F.; Chu, Y.-M. New Hermite-Hadamard type inequalities for exponentially convex functions and applications, AIMS Math., Volume 5 (2020), pp. 6874-6901

Cité par Sources :