Voir la notice de l'article provenant de la source International Scientific Research Publications
Cheng, X.-Li.  1 ; Zuo, H.-W.  2 ; Hua, Z.-Q.  3
@article{JNSA_2022_15_4_a0, author = {Cheng, X.-Li. and Zuo, H.-W. and Hua, Z.-Q. }, title = {Hermite-Hadamard type integral inequalities for geometric-arithmetically \((s,m)\) convex functions}, journal = {Journal of nonlinear sciences and its applications}, pages = {253-266}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2022}, doi = {10.22436/jnsa.015.04.01}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.04.01/} }
TY - JOUR AU - Cheng, X.-Li. AU - Zuo, H.-W. AU - Hua, Z.-Q. TI - Hermite-Hadamard type integral inequalities for geometric-arithmetically \((s,m)\) convex functions JO - Journal of nonlinear sciences and its applications PY - 2022 SP - 253 EP - 266 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.04.01/ DO - 10.22436/jnsa.015.04.01 LA - en ID - JNSA_2022_15_4_a0 ER -
%0 Journal Article %A Cheng, X.-Li. %A Zuo, H.-W. %A Hua, Z.-Q. %T Hermite-Hadamard type integral inequalities for geometric-arithmetically \((s,m)\) convex functions %J Journal of nonlinear sciences and its applications %D 2022 %P 253-266 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.04.01/ %R 10.22436/jnsa.015.04.01 %G en %F JNSA_2022_15_4_a0
Cheng, X.-Li. ; Zuo, H.-W. ; Hua, Z.-Q. . Hermite-Hadamard type integral inequalities for geometric-arithmetically \((s,m)\) convex functions. Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 4, p. 253-266. doi : 10.22436/jnsa.015.04.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.04.01/
[1] New inequalities of Hermite–Hadamard type via s-convex functions in the second sense with applications, Appl. Math. Comput., Volume 217 (2011), pp. 5171-5176
[2] Hermite-Hadamard type inequalities for the $m$-and $(\alpha, m)$-logarithmically convex functions, Filomat, Volume 27 (2013), pp. 1-7
[3] Hermite-Hadamard inequality for semiconvex functions of rate $(k_1, k_2)$ on the coordinates and optimal mass transportation, Rocky Mountain J. Math., Volume 55 (2020), pp. 2011-2021
[4] New fractional estimates for Hermite-Hadamard-Mercer’s type inequalities, Alex. Eng. J., Volume 59 (2020), pp. 3079-3089
[5] More on the Hermite-Hadamard inequality, Int. J. Nonlinear Anal. Appl., Volume 12 (2021), pp. 2153-2159
[6] Generalizations of Hermite–Hadamard inequality to n-time differentiable functions which are s-convex in the second sense, Analysis (Munich), Volume 32 (2012), pp. 209-220
[7] Some new Hermite-Hadamard type inequalities and their applications, Studia Sci. Math. Hungar., Volume 56 (2019), pp. 103-142
[8] On Simpson type inequalities for functions whose derivatives are extended $(s, m)$-GA-convex functions, Pure. Appl. Math., China, Volume 31 (2015), pp. 487-497
[9] Convexity according to the geometric mean, Math. Inequal. Appl., Volume 3 (2000), pp. 155-167
[10] Quantum Hermite-Hadamard inequalities for double integral and q-differentiable convex functions, J. Math. Inequal., Volume 13 (2019), pp. 675-686
[11] Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity, AIMS Math., Volume 5 (2020), pp. 6030-6042
[12] Some new Hermite-Hadamard-type inequalities for geometric-arithmetically s-convex functions, WSEAS Trans. Math., Volume 13 (2014), pp. 452-461
[13] Some new inequalities of Hermite-Hadamard type for s-convex functions, Miskolc Math. Notes, Volume 16 (2015), pp. 491-501
[14] The Hermite-Hadamard inequality for s-Convex functions in the third sense, AIMS Math., Volume 6 (2021), pp. 7719-7732
[15] Hermite-hadamard type integral inequalities for geometric-arithmetically s-convex functions, Analysis (Munich), Volume 33 (2013), pp. 197-208
[16] Some new inequalities of hermite-hadamard type for n-time differentiable functions which are m-convex, Analysis (Munich), Volume 32 (2012), pp. 247-262
[17] Some Hermite-Hadamard Type Inequalities for Differentiable Convex Functions and Applications, Hacet. J. Math. Stat., Volume 42 (2013), pp. 243-257
[18] Integral inequalities of Hermite-Hadamard type for extended $(s, m)$-GA-$\epsilon$-convex functions, Ital. J. Pure Appl. Math., Volume 2020 (2020), pp. 547-557
[19] An extension and refinement of Hermite-Hadamard inequality and related results, Int. J. Nonlinear Anal., Volume 11 (2020), pp. 379-390
[20] Some inequalities of Hermite-Hadamard type for GA-convex functions with applications to means, Matematiche (Catania), Volume 68 (2013), pp. 229-239
[21] New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions, J. Inequal. Appl., Volume 2018 (2018), pp. 1-14
[22] New Hermite-Hadamard type inequalities for exponentially convex functions and applications, AIMS Math., Volume 5 (2020), pp. 6874-6901
Cité par Sources :