Voir la notice de l'article provenant de la source International Scientific Research Publications
Kpomahou, Y. J. F.  1 ; Adechinan, J. A.  2 ; Edou, J. 3 ; Hinvi, L. A.  4
@article{JNSA_2022_15_3_a5, author = {Kpomahou, Y. J. F. and Adechinan, J. A. and Edou, J. and Hinvi, L. A. }, title = {Qualitative analysis, chaos and coexisting attractors in an asymmetric four-well \(\phi^8\)-generalized {Li\'enard} oscillator driven by parametric and external excitations}, journal = {Journal of nonlinear sciences and its applications}, pages = {240-252}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2022}, doi = {10.22436/jnsa.015.03.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.06/} }
TY - JOUR AU - Kpomahou, Y. J. F. AU - Adechinan, J. A. AU - Edou, J. AU - Hinvi, L. A. TI - Qualitative analysis, chaos and coexisting attractors in an asymmetric four-well \(\phi^8\)-generalized Liénard oscillator driven by parametric and external excitations JO - Journal of nonlinear sciences and its applications PY - 2022 SP - 240 EP - 252 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.06/ DO - 10.22436/jnsa.015.03.06 LA - en ID - JNSA_2022_15_3_a5 ER -
%0 Journal Article %A Kpomahou, Y. J. F. %A Adechinan, J. A. %A Edou, J. %A Hinvi, L. A. %T Qualitative analysis, chaos and coexisting attractors in an asymmetric four-well \(\phi^8\)-generalized Liénard oscillator driven by parametric and external excitations %J Journal of nonlinear sciences and its applications %D 2022 %P 240-252 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.06/ %R 10.22436/jnsa.015.03.06 %G en %F JNSA_2022_15_3_a5
Kpomahou, Y. J. F. ; Adechinan, J. A. ; Edou, J.; Hinvi, L. A. . Qualitative analysis, chaos and coexisting attractors in an asymmetric four-well \(\phi^8\)-generalized Liénard oscillator driven by parametric and external excitations. Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 3, p. 240-252. doi : 10.22436/jnsa.015.03.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.06/
[1] Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based hopfield neural network, Front. Comput. Neurosci., Volume 11 (2017), pp. 1-14
[2] Multiple attractor bifurcations: a source of unpredictability in piecewise smooth systems, Phys. Rev. Lett., Volume 83 (1999), pp. 4281-4284
[3] Lienard systems and potential-Hamiltonian decomposition-applications in biology, C. R. Biol., Volume 330 (2007), pp. 97-106
[4] Nonlinear ordinary differential equations, Blackwell, Oxford, England, 1990
[5] On the number of limit cycles of polynomial Lienard systems, Nonlinear Anal. Real World Appl., Volume 14 (2013), pp. 1655-1668
[6] Exact solutions of the Lienard-and generalized Lienard-type ordinary nonlinear differential equations obtained by deforming the phase space coordinates of the linear harmonic oscillator, J. Eng. Math., Volume 98 (2016), pp. 93-111
[7] Resonance, chaos and coexistence of attractors in a position dependent mass driven Duffing type oscillator, J. Korean Phys. Soc., Volume 79 (2021), pp. 755-771
[8] Nonlinear ordinary differential equations, Oxford University Press, England, 1987
[9] Auditory multistability and neurotransmitter concentrations in the human brain, Philos. Trans. Royal Soc. B: Biol. Sci., Volume 372 (2017), pp. 1-8
[10] Chaotic dynamics of an extended duffing oscillator under Periodic excitation, World J. Appl. Phys., Volume 3 (2018), pp. 34-50
[11] Effects of quartic nonlinearities and constant excitation force on nonlinear dynamics of plasma oscillations modeled by a Lienard-type oscillator with asymmetric double well potential, Indian J. Phys., Volume 2022 (2022), pp. 1-20
[12] Regular and chaotic oscillations in a modified Rayleigh-Lienard system under parametric excitation, Int. J. Adv. Math. Mech., Volume 7 (2019), pp. 29-44
[13] Chaotic dynamics of a mixed Rayleigh-Lienard oscillator driven by parametric periodic damping and external excitations, Complexity, Volume 2021 (2021), pp. 1-18
[14] A unified chaotic system with various coexisting attractors, Int. J. Bifurcat. Chaos, Volume 31 (2021), pp. 1-11
[15] Chaos control of a Van der Pol oscillator driven by external excitation, Nonlinear Dyn., Volume 68 (2012), pp. 95-105
[16] Limit cycles in highly nonlinear differential equations, J. Sound Vibr., Volume 243 (1999), pp. 505-517
[17] Stability analysis of nonlinear optical resonators, Chaos Solitons Fract., Volume 9 (1998), pp. 936-946
[18] Approximate solution of a class of nonlinear oscillators in resonance with a periodic excitation, Nonlinear Dyn., Volume 15 (1998), pp. 329-343
[19] Modulated motion and infinite-period homoclinic bifurcation for parametrically excited Lienard systems, Int. J. Nonlinear Mech., Volume 35 (2000), pp. 239-262
[20] Bifurcation analysis of parametrically excited Rayleigh-Lienard oscillators, Nonlinear Dyn., Volume 25 (2001), pp. 293-316
[21] Stability and chaotic dynamics of forced generalized Lienard systems, Pramana-J. Phys., Volume 93 (2019), pp. 1-13 | DOI
[22] Chaotic motions in forced mixed Rayleigh-Lienard oscillator with external and parametric periodic excitations, Int. J. Bifurcat Chaos., Volume 28 (2018), pp. 1-16
[23] Differential Equations and Dynamical Systems,, Springer, New York, 1991
[24] Topological study of Multiple coexisting attractors in a nonlinear system, J. Phys. A: Math.Theor., Volume 42 (2009), pp. 1-16
[25] Oscillations, waves and chaos in chemical kinetics, Oxford Science Publication, England, 1994
[26] Multiple limit cycles of some strongly nonlinear Lienard-Van der Pol oscillator, Appl. Math. Comput., Volume 270 (2015), pp. 620-630
[27] Multiple coexisting attractors and Hysteresis in the generalized Ueda oscillator, Math. Prob. Eng., Volume 2013 (2013), pp. 1-7
[28] Influence of eddy currents on magnetic hysteresis loops in soft magnetic materials, J. Magnetic Matter., Volume 223 (2001), pp. 97-102
[29] Regular, chaotic and hyperchaotic vibrations of nonlinear systems with self, parametric and external excitations, Mech. Automat. Control Robot., Volume 3 (2003), pp. 891-905
[30] Hopf Bifurcation of Z2-equivariant generalized Lienard systems, Int. J. Bifurcat. Chaos, Volume 28 (2018), pp. 1-12 | DOI
[31] Limit cycles of a class of Lienard systems with restoring forces of seventh degree, Appl. Math. Comput., Volume 316 (2018), pp. 422-437
Cité par Sources :