Qualitative analysis, chaos and coexisting attractors in an asymmetric four-well $\phi^8$-generalized Liénard oscillator driven by parametric and external excitations
Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 3, p. 240-252.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we study the qualitative dynamical analysis, routes to chaos and the coexistence of attractors in a four-well $\phi^8$-generalized Liénard oscillator under external and parametric excitations. The local analysis of the autonomous system reveals saddles, nodes, spirals or centers for appropriate choice of stiffness and damping coefficients. The existence of a Hopf bifurcation is proved during the stability analysis of the equilibrium points. The routes to chaos and the prediction of coexisting attractors have been investigated numerically by using the fourth order Runge-Kutta algorithm. The bifurcation structures obtained show that the system displays a rich variety of bifurcation phenomena, such as symmetry breaking, symmetry restoring, period-doubling, period windows, period-m bubbles, reverse period windows, antimonotonicity, intermittency, quasiperiodic, and chaos. In addition, remerging chaotic band attractors and remarkable routes to chaos occur in the system. Further, it is found that the system presents various coexistence of two attractors as well as the monostability and bistability phenomena. On the other hand, for large amplitude of the parametric excitation and with $\omega = 1$, the coexistence of asymmetric periodic bursting oscillations of different topologies takes place in the system. It has also been shown numerically that for appropriate values of system parameters and initial conditions, the presented system can exhibit up to five types of coexisting multiple attractors.
DOI : 10.22436/jnsa.015.03.06
Classification : 34C60, 37D45, 37G35, 65P20
Keywords: Generalized Liénard oscillator, four well potential, parametric excitation, local stability, coexisting attractors

Kpomahou, Y. J. F.  1 ; Adechinan, J. A.  2 ; Edou, J. 3 ; Hinvi, L. A.  4

1 Department of Industrial and Technical Sciences, ENSET-Lokossa, UNSTIM-Abomey, Abomey, Benin
2 Department of Physics, FAST-Natitingou, UNSTIM-Abomey, Abomey, Benin
3 Department of Physics, University of Abomey-Calavi, Abomey-Calabi, Benin
4 Departement de Genie Mecanique et Productique (GMP), Institut National Superieur de Technologie Industrielle (INSTI), Lokossa/UNSTIM-Abomey, Benin
@article{JNSA_2022_15_3_a5,
     author = {Kpomahou, Y. J. F.  and Adechinan, J. A.  and Edou, J. and Hinvi, L. A. },
     title = {Qualitative analysis, chaos and coexisting attractors in an asymmetric four-well \(\phi^8\)-generalized {Li\'enard} oscillator driven by parametric and external excitations},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {240-252},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2022},
     doi = {10.22436/jnsa.015.03.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.06/}
}
TY  - JOUR
AU  - Kpomahou, Y. J. F. 
AU  - Adechinan, J. A. 
AU  - Edou, J.
AU  - Hinvi, L. A. 
TI  - Qualitative analysis, chaos and coexisting attractors in an asymmetric four-well \(\phi^8\)-generalized Liénard oscillator driven by parametric and external excitations
JO  - Journal of nonlinear sciences and its applications
PY  - 2022
SP  - 240
EP  - 252
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.06/
DO  - 10.22436/jnsa.015.03.06
LA  - en
ID  - JNSA_2022_15_3_a5
ER  - 
%0 Journal Article
%A Kpomahou, Y. J. F. 
%A Adechinan, J. A. 
%A Edou, J.
%A Hinvi, L. A. 
%T Qualitative analysis, chaos and coexisting attractors in an asymmetric four-well \(\phi^8\)-generalized Liénard oscillator driven by parametric and external excitations
%J Journal of nonlinear sciences and its applications
%D 2022
%P 240-252
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.06/
%R 10.22436/jnsa.015.03.06
%G en
%F JNSA_2022_15_3_a5
Kpomahou, Y. J. F. ; Adechinan, J. A. ; Edou, J.; Hinvi, L. A. . Qualitative analysis, chaos and coexisting attractors in an asymmetric four-well \(\phi^8\)-generalized Liénard oscillator driven by parametric and external excitations. Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 3, p. 240-252. doi : 10.22436/jnsa.015.03.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.06/

[1] Bao, B.; Qian, H.; Xu, Q.; Chen, M.; Wang, J.; Yu, Y. Coexisting behaviors of asymmetric attractors in hyperbolic-type memristor based hopfield neural network, Front. Comput. Neurosci., Volume 11 (2017), pp. 1-14

[2] Dutta, M.; Nusse, H. E.; Ott, E.; Yorke, J. A.; Yuan, G. Multiple attractor bifurcations: a source of unpredictability in piecewise smooth systems, Phys. Rev. Lett., Volume 83 (1999), pp. 4281-4284

[3] Forest, L.; Glade, N.; Demongeot, J. Lienard systems and potential-Hamiltonian decomposition-applications in biology, C. R. Biol., Volume 330 (2007), pp. 97-106

[4] Grimshaw, R. Nonlinear ordinary differential equations, Blackwell, Oxford, England, 1990

[5] Han, M.; Romanovski, V. G. On the number of limit cycles of polynomial Lienard systems, Nonlinear Anal. Real World Appl., Volume 14 (2013), pp. 1655-1668

[6] Harko, T.; Liang, S. D. Exact solutions of the Lienard-and generalized Lienard-type ordinary nonlinear differential equations obtained by deforming the phase space coordinates of the linear harmonic oscillator, J. Eng. Math., Volume 98 (2016), pp. 93-111

[7] Hinvi, L. A.; Koukpemedji, A. A.; Monwanou, V. A.; Miwadinou, C. H.; Tamba, V. K. Resonance, chaos and coexistence of attractors in a position dependent mass driven Duffing type oscillator, J. Korean Phys. Soc., Volume 79 (2021), pp. 755-771

[8] Jordan, D. W.; Smith, P. Nonlinear ordinary differential equations, Oxford University Press, England, 1987

[9] Kondo, H. N.; Farkas, D.; Denham, S. L.; Asai, T.; Winkler, I. Auditory multistability and neurotransmitter concentrations in the human brain, Philos. Trans. Royal Soc. B: Biol. Sci., Volume 372 (2017), pp. 1-8

[10] Koudahoun, H. L.; Kpomahou, Y. J. F.; Akande, J.; Adjaı, D. K. K. Chaotic dynamics of an extended duffing oscillator under Periodic excitation, World J. Appl. Phys., Volume 3 (2018), pp. 34-50

[11] Kpomahou, ] Y. J. F.; Adechinan, J. A.; Hinvi, L. A. Effects of quartic nonlinearities and constant excitation force on nonlinear dynamics of plasma oscillations modeled by a Lienard-type oscillator with asymmetric double well potential, Indian J. Phys., Volume 2022 (2022), pp. 1-20

[12] Kpomahou, Y. J. F.; Agbokpanzo, R. G.; Hinvi, L. A. Regular and chaotic oscillations in a modified Rayleigh-Lienard system under parametric excitation, Int. J. Adv. Math. Mech., Volume 7 (2019), pp. 29-44

[13] Kpomahou, Y. J. F.; Hinvi, L. A.; Adechinan, J. A.; Miwadinou, C. H. Chaotic dynamics of a mixed Rayleigh-Lienard oscillator driven by parametric periodic damping and external excitations, Complexity, Volume 2021 (2021), pp. 1-18

[14] Lai, Q. A unified chaotic system with various coexisting attractors, Int. J. Bifurcat. Chaos, Volume 31 (2021), pp. 1-11

[15] Liu, D.; Yamaura, H. Chaos control of a Van der Pol oscillator driven by external excitation, Nonlinear Dyn., Volume 68 (2012), pp. 95-105

[16] Lynch, S.; Christopher, C. J. Limit cycles in highly nonlinear differential equations, J. Sound Vibr., Volume 243 (1999), pp. 505-517

[17] Lynch, S.; Steele, A. L.; Hoad, J. E. Stability analysis of nonlinear optical resonators, Chaos Solitons Fract., Volume 9 (1998), pp. 936-946

[18] Maccari, A. Approximate solution of a class of nonlinear oscillators in resonance with a periodic excitation, Nonlinear Dyn., Volume 15 (1998), pp. 329-343

[19] Maccari, A. Modulated motion and infinite-period homoclinic bifurcation for parametrically excited Lienard systems, Int. J. Nonlinear Mech., Volume 35 (2000), pp. 239-262

[20] Maccari, A. Bifurcation analysis of parametrically excited Rayleigh-Lienard oscillators, Nonlinear Dyn., Volume 25 (2001), pp. 293-316

[21] Miwadinou, C. H.; Monwanou, A. V.; Hinv, L. A.; Orou, J. B. Chabi Stability and chaotic dynamics of forced generalized Lienard systems, Pramana-J. Phys., Volume 93 (2019), pp. 1-13 | DOI

[22] Miwadinou, C. H.; Monwanou, A. V.; Koukpemedji, A. A.; Kpomahou, Y. J. F.; Orou, J. B. Chabi Chaotic motions in forced mixed Rayleigh-Lienard oscillator with external and parametric periodic excitations, Int. J. Bifurcat Chaos., Volume 28 (2018), pp. 1-16

[23] Perko, L. Differential Equations and Dynamical Systems,, Springer, New York, 1991

[24] Ray, A.; Ghosh, D.; Chowdhury, A. R. Topological study of Multiple coexisting attractors in a nonlinear system, J. Phys. A: Math.Theor., Volume 42 (2009), pp. 1-16

[25] Scott, S. K. Oscillations, waves and chaos in chemical kinetics, Oxford Science Publication, England, 1994

[26] Sun, X. Multiple limit cycles of some strongly nonlinear Lienard-Van der Pol oscillator, Appl. Math. Comput., Volume 270 (2015), pp. 620-630

[27] Sun, K.; Li-kun, A. Di-li D.; Dong, Y.; Wang, H.; Zhong, Ke Multiple coexisting attractors and Hysteresis in the generalized Ueda oscillator, Math. Prob. Eng., Volume 2013 (2013), pp. 1-7

[28] Szezyglowski, J. Influence of eddy currents on magnetic hysteresis loops in soft magnetic materials, J. Magnetic Matter., Volume 223 (2001), pp. 97-102

[29] Warminski, J. Regular, chaotic and hyperchaotic vibrations of nonlinear systems with self, parametric and external excitations, Mech. Automat. Control Robot., Volume 3 (2003), pp. 891-905

[30] Wu, Y.; Guo, L.; Chen, Y. Hopf Bifurcation of Z2-equivariant generalized Lienard systems, Int. J. Bifurcat. Chaos, Volume 28 (2018), pp. 1-12 | DOI

[31] Yang, J.; Ding, W. Limit cycles of a class of Lienard systems with restoring forces of seventh degree, Appl. Math. Comput., Volume 316 (2018), pp. 422-437

Cité par Sources :