Voir la notice de l'article provenant de la source International Scientific Research Publications
Caratelli, D. 1 ; Pinelas, S. 2 ; Ricci, P. E.  3
@article{JNSA_2022_15_3_a4, author = {Caratelli, D. and Pinelas, S. and Ricci, P. E. }, title = {The {Dirichlet-type} {Laplace} transforms}, journal = {Journal of nonlinear sciences and its applications}, pages = {225-239}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2022}, doi = {10.22436/jnsa.015.03.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.05/} }
TY - JOUR AU - Caratelli, D. AU - Pinelas, S. AU - Ricci, P. E. TI - The Dirichlet-type Laplace transforms JO - Journal of nonlinear sciences and its applications PY - 2022 SP - 225 EP - 239 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.05/ DO - 10.22436/jnsa.015.03.05 LA - en ID - JNSA_2022_15_3_a4 ER -
%0 Journal Article %A Caratelli, D. %A Pinelas, S. %A Ricci, P. E. %T The Dirichlet-type Laplace transforms %J Journal of nonlinear sciences and its applications %D 2022 %P 225-239 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.05/ %R 10.22436/jnsa.015.03.05 %G en %F JNSA_2022_15_3_a4
Caratelli, D.; Pinelas, S.; Ricci, P. E. . The Dirichlet-type Laplace transforms. Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 3, p. 225-239. doi : 10.22436/jnsa.015.03.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.05/
[1] Fourier and Laplace Transforms, Cambridge University Press, Cambridge, 2003
[2] Exponential polynomials, Ann. of Math. (2), Volume 35 (1934), pp. 258-277 | DOI
[3] Theory of generic functions, Quarterly J. Pure Appl. Math., Volume 4 (1861), pp. 279-305
[4] Computation of the Bell-Laplace transforms, Dolomites Res. Notes Approx., Volume 14 (2021), pp. 74-91
[5] Approximating generalized Laplace transforms, J. Comput. Math., Volume 6 (2021), pp. 15-40
[6] Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht, 1974
[7] Laguerre-type exponentials, and the relevant L-circular and L-hyperbolic functions, Georgian Math. J., Volume 10 (2003), pp. 481-494
[8] Trasformate di Laplace e calcolo simbolico, Unione Tipografico–Editrice Torinese (UTET), Turin, 1971
[9] From the hyper-Bessel opertors of Dimovski to the generalized fractional calculus, Fract. Calc. Appl. Anal., Volume 17 (2014), pp. 977-1000
[10] Explicit solution of the nonhomogeneous hyper-Bessel differential equation, C. R. Acad. Bulgare Sci., Volume 46 (1993), pp. 23-26
[11] Valeurs asymptotiques de certaines séries procédant suivant les puissances entières et positives d'une variable réelle, Darboux Bull. (2), Volume 4 (1899), pp. 245-268
[12] Bell polynomials and generalized Laplace transforms, arXiv, Volume 2021 (2021), pp. 1-17
[13] Tricomi’s Method for the Laplace Transform and Orthogonal Polynomials, Symmetry, Volume 13 (2021), pp. 1-13
[14] Introduction to Combinatorial Analysis, John Wiley & Sons, New York, 1958
[15] The umbral calculus, Academic Press, New York, 1984
[16] The umbral calculus, Advances in Math., Volume 27 (1978), pp. 95-188
[17] Ancora sull’inversione della trasformazione di Laplace, (Italian), Rend. Lincei. (6), Volume 21 (1935), pp. 420-426
[18] Trasformazione di Laplace e polinomi di Laguerre, I. Inversione della trasformazione; II. Alcune nuove formule sui polinomi di Laguerre, (Italian), Rend. Accad. Lincei (vi), Volume 21 (1935), pp. 235-242
[19] The Laplace Transform, Princeton University Press, Princeton, 1946
Cité par Sources :