The Dirichlet-type Laplace transforms
Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 3, p. 225-239.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We show that it is possible to define extensions of the Laplace transform that use a general Dirichlet series as a kernel. These transforms, denoted by DLTs, further generalize those, considered in previous papers, in which the kernels were related to Laguerre-type exponentials or Bell polynomials. Computational techniques, exploiting expansions in Laguerre polynomials, and using Tricomi's method, have been considered. Since it turns out that the transforms considered are obtained as linear combinations of ordinary Laplace transforms, it is also possible to define an approximation of the relevant inverse transforms. Numerical experiments, performed with the algebra program Mathematica, show that the introduced technique is fast and efficient.
DOI : 10.22436/jnsa.015.03.05
Classification : 30B50, 44A10, 05A15, 05A40, 11B83
Keywords: General Dirichlet series, Laguerre-type exponentials, Bell polynomials, Laplace transform

Caratelli, D. 1 ; Pinelas, S. 2 ; Ricci, P. E.  3

1 Electromagnetics Group, Department of Electrical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
2 Academia Militar-Departamento de Ciências Exatas e Engenharias, Av. Conde Castro Guimarães, 2720-113, Amadora, Portugal
3 Sezione di Matematica, International Telematic University UniNettuno, 39 Corso Vittorio Emanuele II, I-00186 Rome, Italy
@article{JNSA_2022_15_3_a4,
     author = {Caratelli, D. and Pinelas, S. and Ricci, P. E. },
     title = {The {Dirichlet-type} {Laplace} transforms},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {225-239},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2022},
     doi = {10.22436/jnsa.015.03.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.05/}
}
TY  - JOUR
AU  - Caratelli, D.
AU  - Pinelas, S.
AU  - Ricci, P. E. 
TI  - The Dirichlet-type Laplace transforms
JO  - Journal of nonlinear sciences and its applications
PY  - 2022
SP  - 225
EP  - 239
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.05/
DO  - 10.22436/jnsa.015.03.05
LA  - en
ID  - JNSA_2022_15_3_a4
ER  - 
%0 Journal Article
%A Caratelli, D.
%A Pinelas, S.
%A Ricci, P. E. 
%T The Dirichlet-type Laplace transforms
%J Journal of nonlinear sciences and its applications
%D 2022
%P 225-239
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.05/
%R 10.22436/jnsa.015.03.05
%G en
%F JNSA_2022_15_3_a4
Caratelli, D.; Pinelas, S.; Ricci, P. E. . The Dirichlet-type Laplace transforms. Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 3, p. 225-239. doi : 10.22436/jnsa.015.03.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.05/

[1] Beerends, R. J.; Morsche, H. G. ter; Berg, J. C. van den; Vrie, E. M. van de Fourier and Laplace Transforms, Cambridge University Press, Cambridge, 2003

[2] Bell, E. T. Exponential polynomials, Ann. of Math. (2), Volume 35 (1934), pp. 258-277 | DOI

[3] Blissard, J. Theory of generic functions, Quarterly J. Pure Appl. Math., Volume 4 (1861), pp. 279-305

[4] Caratelli, D.; Cesarano, C.; Ricci, P. E. Computation of the Bell-Laplace transforms, Dolomites Res. Notes Approx., Volume 14 (2021), pp. 74-91

[5] Caratelli, D.; Ricci, P. E. Approximating generalized Laplace transforms, J. Comput. Math., Volume 6 (2021), pp. 15-40

[6] Comtet, L. Advanced Combinatorics, D. Reidel Publishing Co., Dordrecht, 1974

[7] Dattoli, G.; Ricci, P. E. Laguerre-type exponentials, and the relevant L-circular and L-hyperbolic functions, Georgian Math. J., Volume 10 (2003), pp. 481-494

[8] Ghizzetti, A.; Ossicini, A. Trasformate di Laplace e calcolo simbolico, Unione Tipografico–Editrice Torinese (UTET), Turin, 1971

[9] Kiryakova, V. From the hyper-Bessel opertors of Dimovski to the generalized fractional calculus, Fract. Calc. Appl. Anal., Volume 17 (2014), pp. 977-1000

[10] Kiryakova, ] V. S.; McBride, A. C. Explicit solution of the nonhomogeneous hyper-Bessel differential equation, C. R. Acad. Bulgare Sci., Volume 46 (1993), pp. 23-26

[11] Roy, E. Le Valeurs asymptotiques de certaines séries procédant suivant les puissances entières et positives d'une variable réelle, Darboux Bull. (2), Volume 4 (1899), pp. 245-268

[12] Ricci, P. E. Bell polynomials and generalized Laplace transforms, arXiv, Volume 2021 (2021), pp. 1-17

[13] Ricci, P. E.; Caratelli, D.; Mainardi, F. Tricomi’s Method for the Laplace Transform and Orthogonal Polynomials, Symmetry, Volume 13 (2021), pp. 1-13

[14] Riordan, J. Introduction to Combinatorial Analysis, John Wiley & Sons, New York, 1958

[15] Roman, S. The umbral calculus, Academic Press, New York, 1984

[16] Roman, S. M.; Rota, G.-C. The umbral calculus, Advances in Math., Volume 27 (1978), pp. 95-188

[17] Tricomi, F. G. Ancora sull’inversione della trasformazione di Laplace, (Italian), Rend. Lincei. (6), Volume 21 (1935), pp. 420-426

[18] Tricomi, F. G. Trasformazione di Laplace e polinomi di Laguerre, I. Inversione della trasformazione; II. Alcune nuove formule sui polinomi di Laguerre, (Italian), Rend. Accad. Lincei (vi), Volume 21 (1935), pp. 235-242

[19] Widder, D. V. The Laplace Transform, Princeton University Press, Princeton, 1946

Cité par Sources :