Voir la notice de l'article provenant de la source International Scientific Research Publications
Ezeora, J. N. 1 ; Ogbonna, R. C.  2 ; Bazuaye, F. E.  1
@article{JNSA_2022_15_3_a3, author = {Ezeora, J. N. and Ogbonna, R. C. and Bazuaye, F. E. }, title = {An inertia-based algorithm for pseudomonotone variational inequality and fixed point problems in real {Hilbert} space}, journal = {Journal of nonlinear sciences and its applications}, pages = {209-224}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2022}, doi = {10.22436/jnsa.015.03.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.04/} }
TY - JOUR AU - Ezeora, J. N. AU - Ogbonna, R. C. AU - Bazuaye, F. E. TI - An inertia-based algorithm for pseudomonotone variational inequality and fixed point problems in real Hilbert space JO - Journal of nonlinear sciences and its applications PY - 2022 SP - 209 EP - 224 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.04/ DO - 10.22436/jnsa.015.03.04 LA - en ID - JNSA_2022_15_3_a3 ER -
%0 Journal Article %A Ezeora, J. N. %A Ogbonna, R. C. %A Bazuaye, F. E. %T An inertia-based algorithm for pseudomonotone variational inequality and fixed point problems in real Hilbert space %J Journal of nonlinear sciences and its applications %D 2022 %P 209-224 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.04/ %R 10.22436/jnsa.015.03.04 %G en %F JNSA_2022_15_3_a3
Ezeora, J. N.; Ogbonna, R. C. ; Bazuaye, F. E. . An inertia-based algorithm for pseudomonotone variational inequality and fixed point problems in real Hilbert space. Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 3, p. 209-224. doi : 10.22436/jnsa.015.03.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.04/
[1] Iterative methods for strict pseudo-contractions in Hilbert spaces, Nonlinear Anal., Volume 67 (2007), pp. 2258-2271
[2] Iterative schemes for solving mixed variational-like inequalities, J. Optim. Theory Appl., Volume 108 (2001), pp. 527-541
[3] A strongly convergent direct method for monotone variational inequalities in Hilbert space, Numer. Funct. Anal. Optim., Volume 30 (2009), pp. 23-36
[4] The forward-backward-forward method from discrete and continuous perspective for pseudomonotone variational inequalities in Hilbert spaces, arXiv, Volume 2018 (2018), pp. 1-12
[5] Hybrid viscosity extragradient method for systems of variational inequalities, fixed points of nonexpansive mappings, zero points of accretive operators in Banach spaces, Fixed Point Theory, Volume 19 (2018), pp. 487-501
[6] Extensions of Korpelevich´s extragradient method for the variational inequality problem in Euclidean space, Optimization, Volume 61 (2012), pp. 1119-1132
[7] Geometric Properties of Banach Spaces and Nonlinear Iterations, Springer-Verlag, London, 2009
[8] An example on the Mann iteration method for Lipschitz pseudocontractioons, Proc. Amer. Math. Soc., Volume 129 (2001), pp. 2359-2363
[9] A novel inertial projection and contraction method for solving pseudomonotone variational inequality problems, Acta Appl. Math., Volume 169 (2020), pp. 217-245
[10] Forward-backward splitting algorithm for fixed point problems and zeros of the sum of monotone operators, Arab. J. Math. (Springer), Volume 9 (2020), pp. 89-99
[11] Inertial projection and contraction algorithms for variational inequalities, J. Global Optim., Volume 70 (2018), pp. 687-704
[12] Approximation of solution of a system of variational inequality problems in real Banach spaces, JP J. Fixed Point Theory Appl., Volume 11 (2017), pp. 207-220
[13] An approximate proximal-extragradient type method for monotone variational inequalities, J. Math. Anal. Appl., Volume 300 (2004), pp. 362-374
[14] An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vision, Volume 51 (2015), pp. 311-325
[15] Convergence theorems for inertial KM-type algorithms, J. Comput. Appl. Math., Volume 219 (2008), pp. 223-236
[16] Some methods of speeding up the convergence of iteration methods, Comput. Math. Phys., Volume 4 (1964), pp. 1-17
[17] Projection methods with alternating inertial steps for variational inequalities: weak and linear convergence, Appl. Numer. Math., Volume 157 (2020), pp. 315-337
[18] On a new iteration scheme for numerical reckoning fixed points of Berinde mappings with convergence analysis, J. Nonlinear Sci. Appl., Volume 9 (2016), pp. 2553-2562
[19] Weak convergence theorem for a class of split variational inequality problems and applications in a Hilbert space, J. Inequal. Appl., Volume 2017 (2017), pp. 1-17
[20] Modified extragradient-like algorithms with new stepsizes for variational inequalities, Comput. Optim. Appl., Volume 73 (2019), pp. 913-932
[21] Explicit extragradient-like method with regularization for variational inequalities, Results Math., Volume 74 (2019), pp. 1-20
[22] Strong convergence result for solving monotone variational inequalities in Hilbert space, Numer. Algorithms, Volume 80 (2019), pp. 741-752
[23] Split common fixed point problem for two quasi-pseudocontractive operators and its algorithm construction, Fixed Point Theory Appl., Volume 2015 (2015), pp. 1-19
[24] Iterative algorithms for pseudomonotone variational inequalities and fixed point problems of pseudocontractive operators, Mathematics, Volume 7 (2019), pp. 1-14
[25] Strong convergence of an explicit iterative algorithm for continuous pseudocontractions in Banach, Nonlinear Anal., Volume 70 (2009), pp. 4039-4046
Cité par Sources :