Continuation theorems for weakly inward Kakutani and Strongly inward acyclic maps
Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 3, p. 203-208.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper we begin by presenting a general Leray-Schauder alternative and a topological transversality theorem for Kakutani (upper semicontinuous maps with nonempty convex compact values) compact weakly inward maps. Then with some observations and extra assumptions we present a Leray-Schauder alternative and a topological transversality theorem for acyclic (upper semicontinuous maps with nonempty acyclic compact values) compact strongly inward maps.
DOI : 10.22436/jnsa.015.03.03
Classification : 47H10, 54H25
Keywords: Essential maps, homotopy, inward maps, acyclic maps

O'Regan, D. 1

1 School of Mathematical and Statistical Sciences, National University of Ireland, Galway, Ireland
@article{JNSA_2022_15_3_a2,
     author = {O'Regan, D.},
     title = {Continuation theorems for weakly inward {Kakutani} and {Strongly} inward acyclic maps},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {203-208},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2022},
     doi = {10.22436/jnsa.015.03.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.03/}
}
TY  - JOUR
AU  - O'Regan, D.
TI  - Continuation theorems for weakly inward Kakutani and Strongly inward acyclic maps
JO  - Journal of nonlinear sciences and its applications
PY  - 2022
SP  - 203
EP  - 208
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.03/
DO  - 10.22436/jnsa.015.03.03
LA  - en
ID  - JNSA_2022_15_3_a2
ER  - 
%0 Journal Article
%A O'Regan, D.
%T Continuation theorems for weakly inward Kakutani and Strongly inward acyclic maps
%J Journal of nonlinear sciences and its applications
%D 2022
%P 203-208
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.03/
%R 10.22436/jnsa.015.03.03
%G en
%F JNSA_2022_15_3_a2
O'Regan, D. Continuation theorems for weakly inward Kakutani and Strongly inward acyclic maps. Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 3, p. 203-208. doi : 10.22436/jnsa.015.03.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.03/

[1] Agarwal, R. P.; O'Regan, D. Fixed points for admissible multimaps, Dynam. Systems Appl., Volume 11 (2002), pp. 437-448

[2] Agarwal, R. P.; D.O'Regan A note on the topological transversality theorem for acyclic maps, Appl. Math. Lett., Volume 18 (2005), pp. 17-22

[3] Deimling, K. Multivalued differential equations, Walter de Gruyter & Co., Berlin, 1992

[4] Fitzpatrick, P. M.; Petryshyn, W. V. Fixed point theorems for multivalued noncompact acyclic mappings, Pacific J. Math., Volume 54 (1974), pp. 17-23

[5] Fournier, G.; Peitgen, H.-O. On some fixed point principles for cones in linear normed spaces, Math. Ann., Volume 225 (1977), pp. 205-218

[6] Granas, A.; Dugundji, J. Fixed Point Theory, Springer-Verlag, New York, 2003 | Zbl | DOI

[7] Halpern, B. Fixed point theorems for set--valued maps in infinite dimensional spaces, Math. Ann., Volume 189 (1970), pp. 87-98

[8] O'Regan, D. A continuation theory for weakly inward maps, Glasgow Math. J., Volume 40 (1998), pp. 311-321

[9] O'Regan, D. Homotopy and Leray--Schauder type results for admissible inward multimaps, J. Concr. Appl. Math., Volume 2 (2004), pp. 67-76

[10] O'Regan, D. Continuation theorems for acyclic maps in topological spaces, Commun. Appl. Anal., Volume 13 (2009), pp. 39-46

Cité par Sources :