Voir la notice de l'article provenant de la source International Scientific Research Publications
Koca, I. 1 ; Bulut, H. 2 ; Akcetin, E. 1
@article{JNSA_2022_15_3_a1, author = {Koca, I. and Bulut, H. and Akcetin, E.}, title = {A different approach for behavior of fractional plant virus model}, journal = {Journal of nonlinear sciences and its applications}, pages = {186-202}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2022}, doi = {10.22436/jnsa.015.03.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.02/} }
TY - JOUR AU - Koca, I. AU - Bulut, H. AU - Akcetin, E. TI - A different approach for behavior of fractional plant virus model JO - Journal of nonlinear sciences and its applications PY - 2022 SP - 186 EP - 202 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.02/ DO - 10.22436/jnsa.015.03.02 LA - en ID - JNSA_2022_15_3_a1 ER -
%0 Journal Article %A Koca, I. %A Bulut, H. %A Akcetin, E. %T A different approach for behavior of fractional plant virus model %J Journal of nonlinear sciences and its applications %D 2022 %P 186-202 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.02/ %R 10.22436/jnsa.015.03.02 %G en %F JNSA_2022_15_3_a1
Koca, I.; Bulut, H.; Akcetin, E. A different approach for behavior of fractional plant virus model. Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 3, p. 186-202. doi : 10.22436/jnsa.015.03.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.02/
[1] A new numerical scheme applied on re-visited nonlinear model of predator-prey based on derivative with non-local and non-singular kernel, Discrete Contin. Dyn. Syst. Ser. S, Volume 13 (2020), pp. 429-442
[2] Stochastic Modeling of Plant Virus Propagation with Biological Control, Mathematics, Volume 9 (2021), pp. 1-14 | DOI
[3] Analysis of a Fractional Plant-Nectar-Pollinator Model with the Exponential Kernel, Eastern Anatol. J. Sci., Volume 6 (2020), pp. 11-20
[4] Caputo and Atangana-Baleanu-Caputo Fractional Derivative Applied to Garden Equation, Turkish J. Sci., Volume 5 (2020), pp. 1-7
[5] Analyzing a novel coronavirus model (Covid-19) in the sense of Caputo Fabrizio fractional operator, Appl. Comput. Math., Volume 20 (2021), pp. 49-69
[6] Insect vectors as drivers of plant virus emergence, Curr. Opin. Virol., Volume 10 (2015), pp. 42-46
[7] A model for analysing plant-virus transmission characteristics and epidemic development, Math. Med. Biol. A J. IMA, Volume 15 (1998), pp. 1-8
[8] Numerical approximation for the spread of SIQR model with Caputo fractional order derivative, Turkish J. Sci., Volume 5 (2020), pp. 124-139
[9] Fractional Differential Equations, Acedemic Press, San Diego, 1999 | Zbl
[10] Top 10 plant viruses in molecular plant pathology, Mol. Plant Pathol., Volume 12 (2011), pp. 938-954
[11] Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosc., Volume 180 (2002), pp. 29-48
Cité par Sources :