A different approach for behavior of fractional plant virus model
Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 3, p. 186-202.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In the last few decades many authors pointed out that derivatives and integrals of non-integer order are very suitable for the description of properties of various real problems. It has been shown that fractional-order models are more adequate than previously used integer-order models. In this work, we aim to investigate of different features of the plant virus model with its fractional order equivalent. We present an application for reproduction number for these kind of epidemic models with next generation matrix method. Also, existence and uniqueness of solutions have been showed for this fractional order system. Finally we present some figures according to the given numerical scheme.
DOI : 10.22436/jnsa.015.03.02
Classification : 26A33, 34A34, 35B44, 65M06
Keywords: Fractional differential equation, existence and uniqueness, numerical approximation

Koca, I. 1 ; Bulut, H. 2 ; Akcetin, E. 1

1 Department of Accounting and Financial Management, Seydikemer School of Applied Sciences, Mugla Sitki Kocman University, Mugla, Turkey
2 Department of Mathematics, Science Faculty, Firat University, 23119 Elazig, Turkey
@article{JNSA_2022_15_3_a1,
     author = {Koca, I. and Bulut, H. and Akcetin, E.},
     title = {A different approach for behavior of fractional plant virus model},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {186-202},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2022},
     doi = {10.22436/jnsa.015.03.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.02/}
}
TY  - JOUR
AU  - Koca, I.
AU  - Bulut, H.
AU  - Akcetin, E.
TI  - A different approach for behavior of fractional plant virus model
JO  - Journal of nonlinear sciences and its applications
PY  - 2022
SP  - 186
EP  - 202
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.02/
DO  - 10.22436/jnsa.015.03.02
LA  - en
ID  - JNSA_2022_15_3_a1
ER  - 
%0 Journal Article
%A Koca, I.
%A Bulut, H.
%A Akcetin, E.
%T A different approach for behavior of fractional plant virus model
%J Journal of nonlinear sciences and its applications
%D 2022
%P 186-202
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.02/
%R 10.22436/jnsa.015.03.02
%G en
%F JNSA_2022_15_3_a1
Koca, I.; Bulut, H.; Akcetin, E. A different approach for behavior of fractional plant virus model. Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 3, p. 186-202. doi : 10.22436/jnsa.015.03.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.02/

[1] Alkahtani, B. S. T.; Koca, I. A new numerical scheme applied on re-visited nonlinear model of predator-prey based on derivative with non-local and non-singular kernel, Discrete Contin. Dyn. Syst. Ser. S, Volume 13 (2020), pp. 429-442

[2] Chen-Charpentier, B. Stochastic Modeling of Plant Virus Propagation with Biological Control, Mathematics, Volume 9 (2021), pp. 1-14 | DOI

[3] Dokuyucu, M. A. Analysis of a Fractional Plant-Nectar-Pollinator Model with the Exponential Kernel, Eastern Anatol. J. Sci., Volume 6 (2020), pp. 11-20

[4] Dokuyucu, M. A. Caputo and Atangana-Baleanu-Caputo Fractional Derivative Applied to Garden Equation, Turkish J. Sci., Volume 5 (2020), pp. 1-7

[5] Dokuyucu, M. A.; Çelik, E. Analyzing a novel coronavirus model (Covid-19) in the sense of Caputo Fabrizio fractional operator, Appl. Comput. Math., Volume 20 (2021), pp. 49-69

[6] Fereres, A. Insect vectors as drivers of plant virus emergence, Curr. Opin. Virol., Volume 10 (2015), pp. 42-46

[7] Jeger, M.; Bosch, F. Van Den; Madden, L.; Holt, J. A model for analysing plant-virus transmission characteristics and epidemic development, Math. Med. Biol. A J. IMA, Volume 15 (1998), pp. 1-8

[8] Koca, I.; Akcetin, E.; Yaprakdal, P. Numerical approximation for the spread of SIQR model with Caputo fractional order derivative, Turkish J. Sci., Volume 5 (2020), pp. 124-139

[9] Podlubny, I. Fractional Differential Equations, Acedemic Press, San Diego, 1999 | Zbl

[10] Scholthof, K. B. G.; Adkins, S.; Czosnek, H.; Palukaitis, P.; Jacquot, E.; Hohn, T.; Hohn, B.; Saunders, K.; Candresse, T.; Ahlquist, P.; Hemenwat, C.; Foster, G. D. Top 10 plant viruses in molecular plant pathology, Mol. Plant Pathol., Volume 12 (2011), pp. 938-954

[11] Driessche, P. van den; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosc., Volume 180 (2002), pp. 29-48

Cité par Sources :