Controllability of neutral impulsive stochastic functional integrodifferential equations driven by a fractional Brownian motion with infinite delay via resolvent operator
Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 3, p. 172-185.

Voir la notice de l'article provenant de la source International Scientific Research Publications

This paper is concerned with the controllability results of neutral impulsive stochastic functional integrodifferential equations driven by a fractional Brownian motion with infinite delay in a real separable Hilbert space. The controllability results are obtained using stochastic analysis, the theory of resolvent operator in the sense of Grimmer and Krasnoselskii fixed point theorem. An example is provided to illustrate the obtained theory.
DOI : 10.22436/jnsa.015.03.01
Classification : 35R10, 60G22, 60H20, 93B05
Keywords: Controllability, impulsive systems, fractional Brownian motion, neutral functional integrodifferential equations, resolvent operator, infinite delay

Chalishajar, D.  1 ; Ramkumar, K. 2 ; Anguraj, A. 2 ; Ravikumar, K. 2 ; Diop, M. A.  3

1 Department of Mathematics and Computer science, Mallory Hall, Virginia Military Institute, Lexington, VA 24450, United States
2 Department of Mathematics, PSG College of Arts and Science, Coimbatore, 641 046, India
3 Departement de Mathematiques, Universite Geston Berger de Sanit-Louis, UFR SAT-St Louis, Senegal
@article{JNSA_2022_15_3_a0,
     author = {Chalishajar, D.  and Ramkumar, K. and Anguraj, A. and Ravikumar, K. and Diop, M. A. },
     title = {Controllability of neutral impulsive stochastic functional integrodifferential equations driven by a fractional {Brownian} motion with infinite delay via resolvent operator},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {172-185},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2022},
     doi = {10.22436/jnsa.015.03.01},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.01/}
}
TY  - JOUR
AU  - Chalishajar, D. 
AU  - Ramkumar, K.
AU  - Anguraj, A.
AU  - Ravikumar, K.
AU  - Diop, M. A. 
TI  - Controllability of neutral impulsive stochastic functional integrodifferential equations driven by a fractional Brownian motion with infinite delay via resolvent operator
JO  - Journal of nonlinear sciences and its applications
PY  - 2022
SP  - 172
EP  - 185
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.01/
DO  - 10.22436/jnsa.015.03.01
LA  - en
ID  - JNSA_2022_15_3_a0
ER  - 
%0 Journal Article
%A Chalishajar, D. 
%A Ramkumar, K.
%A Anguraj, A.
%A Ravikumar, K.
%A Diop, M. A. 
%T Controllability of neutral impulsive stochastic functional integrodifferential equations driven by a fractional Brownian motion with infinite delay via resolvent operator
%J Journal of nonlinear sciences and its applications
%D 2022
%P 172-185
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.01/
%R 10.22436/jnsa.015.03.01
%G en
%F JNSA_2022_15_3_a0
Chalishajar, D. ; Ramkumar, K.; Anguraj, A.; Ravikumar, K.; Diop, M. A. . Controllability of neutral impulsive stochastic functional integrodifferential equations driven by a fractional Brownian motion with infinite delay via resolvent operator. Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 3, p. 172-185. doi : 10.22436/jnsa.015.03.01. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.03.01/

[1] Anguraj, A.; Ramkumar, K. Approximate controllability of semilinear stochastic integrodifferential system with nonlocal conditions, Fractal Fract., Volume 2 (2018), pp. 1-13 | DOI

[2] Arthi, G.; Park, J. H.; Jung, H. Y. Existence and exponential stability for neutral stochastic integrodifferential equations with impulses driven by a fractional Brownian motion, Commun. Nonlinear Sci. Numer. Simul., Volume 32 (2016), pp. 145-157

[3] Balachandran, K.; Karthikeyan, S.; Kim, J. H. Controllability of semilinear stochastic integrodifferential equations, Kybernetika, Volume 43 (2007), pp. 31-44

[4] Boufoussi, B.; Hajji, S. Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space, Statist. Probab. Lett., Volume 82 (2012), pp. 1549-1558 | DOI

[5] Boufoussi, B.; Hajji, S.; Lakhel, E. Functional differential equations in Hilbert spaces driven by a fractional Brownian motion, Afr. Mat., Volume 23 (2012), pp. 173-194

[6] Chen, M. Approximate controllability of stochastic equations in a Hilbert space with fractional Brownian motions, Stoch. Dyn., Volume 15 (2015), pp. 1-16

[7] Diop, M. A.; Sakthivel, R.; Ndiaye, A. A. Neutral stochastic integrodifferential equations driven by a fractional Brownian motion with impulsive effects and time varying delays, Mediterr. J. Math., Volume 13 (2016), pp. 2425-2442

[8] Grimmer, R. C. Resolvent operators for integral equations in a Banach space, Trans. Amer. Math. Soc., Volume 273 (1982), pp. 333-349 | DOI

[9] Klamka, J. Stochastic controllability of linear systems with delay in control, Bull. Pol. Acad. Sci. Tech. Sci., Volume 55 (2007), pp. 23-29

[10] Klamka, J. Controllability of dynamical systems--A survey, Bull. Pol. Acad. Sci. Tech. Sci., Volume 61 (2013), pp. 221-229

[11] Lakhel, E. Controllability of neutral stochastic functional integrodifferential equations driven by fractional Brownian motion, Stoch. Anal. Appl., Volume 34 (2016), pp. 427-440

[12] Lakhel, E.; Hajji, S. Existence and Uniqueness of Mild Solutions to NFSDEs Driven by a Fractional Brownian Motion With Non-Lipschitz Coefficients, J. Numer. Math. Stoch., Volume 7 (2015), pp. 14-29

[13] Li, Y.; Liu, B. Existence of solution of nonlinear neutral functional differential inclusion with infinite delay, Stoch. Anal. Appl., Volume 25 (2007), pp. 397-415 | DOI

[14] Liang, J.; Liu, J. H.; Xiao, T.-J. Nonlocal problems for integrodifferential equations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., Volume 15 (2008), pp. 815-824

[15] Park, J. Y.; Balachandran, K.; Arthi, G. Controllability of impulsive neutral integrodifferential systems with infinite delay in Banach spaces, Nonlinear Anal. Hybrid Syst., Volume 3 (2009), pp. 184-194

[16] Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983 | DOI

[17] Ren, Y.; Cheng, X.; Sakthivel, R. On time dependent stochastic evolution equations driven by fractional Brownian motion in Hilbert space with finite delay, Math. Methods Appl. Sci., Volume 37 (2014), pp. 2177-2184

[18] Sakthivel, R.; Ganesh, R.; Ren, Y.; Anthoni, S. M. Approximate controllability of nonlinear fractional dynamical systems, Commun. Nonlinear Sci. Numer. Simul., Volume 18 (2013), pp. 3498-3508

[19] Sakthivel, R.; Luo, J. Asymptotic stability of nonlinear impulsive stochastic differential equations, Statist. Probab. Lett., Volume 79 (2009), pp. 1219-1223 | DOI

Cité par Sources :