Voir la notice de l'article provenant de la source International Scientific Research Publications
Hamit, M. H. M. 1 ; Bete, K. H.  2 ; Mahamat, B. I.  3 ; Diop, M. A.  4
@article{JNSA_2022_15_2_a5, author = {Hamit, M. H. M. and Bete, K. H. and Mahamat, B. I. and Diop, M. A. }, title = {Controllability of impulsive stochastic functional integrodifferential equations driven by {Rosenblatt} process and {L\'evy} noise}, journal = {Journal of nonlinear sciences and its applications}, pages = {152-171}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2022}, doi = {10.22436/jnsa.015.02.06}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.02.06/} }
TY - JOUR AU - Hamit, M. H. M. AU - Bete, K. H. AU - Mahamat, B. I. AU - Diop, M. A. TI - Controllability of impulsive stochastic functional integrodifferential equations driven by Rosenblatt process and Lévy noise JO - Journal of nonlinear sciences and its applications PY - 2022 SP - 152 EP - 171 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.02.06/ DO - 10.22436/jnsa.015.02.06 LA - en ID - JNSA_2022_15_2_a5 ER -
%0 Journal Article %A Hamit, M. H. M. %A Bete, K. H. %A Mahamat, B. I. %A Diop, M. A. %T Controllability of impulsive stochastic functional integrodifferential equations driven by Rosenblatt process and Lévy noise %J Journal of nonlinear sciences and its applications %D 2022 %P 152-171 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.02.06/ %R 10.22436/jnsa.015.02.06 %G en %F JNSA_2022_15_2_a5
Hamit, M. H. M.; Bete, K. H. ; Mahamat, B. I. ; Diop, M. A. . Controllability of impulsive stochastic functional integrodifferential equations driven by Rosenblatt process and Lévy noise. Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 2, p. 152-171. doi : 10.22436/jnsa.015.02.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.02.06/
[1] Wavelet-based synthesis of the Rosenblatt process, Signal Process, Volume 86 (2006), p. 23326-2339
[2] Approximate controllability of impulsive neutral stochastic differential equations with fractional Brownian motion in a Hilbert space, Adv. Differential Equ., Volume 2014 (2014), pp. 1-11
[3] Exponential stability of solutions to semilinear parabolic equations with delays, Taiwanese J. Math., Volume 16 (2012), pp. 2133-2151
[4] Controllability of damped second-order neutral functional differential systems with impulses, Taiwanese J. Math., Volume 16 (2012), pp. 89-106
[5] Controllability of stochastic impulsive neutral functional differential equations driven by fractional Brownian motion with infinite delay, Differ. Equ. Dyn. Syst., Volume 26 (2018), pp. 247-263
[6] Controllability of impulsive neutral stochastic integrodifferentialsystems driven by fractional Brownian motion with delay and Poisson jumps, Proyecciones (Antofagasta, Online), Volume 2021 (2021), pp. 1-18
[7] Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl., Volume 20 (1967), pp. 197-228
[8] Approximate controllability of stochastic equations in a Hilbert space with fractional Brownian motions, Stoch. Dyn., Volume 15 (2015), pp. 1-16
[9] Differential Models and Neutral Systems for Controlling the Wealth of Nations, World Scientific Publishing Co., River Edge, 2001
[10] Controllability of neutral stochastic evolution equations driven by fractional Brownian motion, Acta Math. Sci. Ser. B (Engl. Ed.), Volume 37 (2017), pp. 108-118
[11] Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 2014 | DOI
[12] Existence of solutions for a fractional neutral integro-differential equation with unbounded delay, Electron. J. Differential Equations, Volume 2012 (2012), pp. 1-13
[13] Sobolev type fractional abstract evolution equations with nonlocal conditions and optimal multi-controls, Appl. Math. Comput., Volume 245 (2014), pp. 74-85
[14] On exponential stability of mild solutions for some stochastics partial integrodifferential equations, Statist. Probab. Lett., Volume 123 (2017), pp. 61-76
[15] Non-central limit theorems for non-linear functionals of Gaussian fields, Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete, Volume 50 (1979), pp. 27-52
[16] Existence results for neutral integro-differential equations with unbounded delay, J. Integral Equ. Appl., Volume 23 (2011), pp. 289-330
[17] Local existence and regularity of solutions for some partial functional integrodifferential equations with infinite delay in Banach space, Nonlinear Anal., Volume 70 (2009), pp. 3378-3389 | DOI
[18] Stochastic Differential Equations in Infinite Dimensions with Applications to Stochastic Partial Differential Equations, Probability and its Applications, Springer, Heidelberg, 2011
[19] Resolvent operators for integral equations in a Banach space, Trans. Amer. Math. Soc., Volume 273 (1982), pp. 333-349 | DOI
[20] A class of functional equations of neutral type, American Mathematical Society, Providence, 1967
[21] Introduction to functional differential equations, Springer-Verlag, New York, 1993 | DOI
[22] Differentiability of solutions of abstract neutral integro-differential equations, J. Integral Equations Appl., Volume 25 (2013), pp. 47-77
[23] Controllability of Volterra Fredholm type systems in Banach spaces, J. Franklin Inst., Volume 346 (2009), pp. 95-101
[24] On the controllability of nonlocal second‐order impulsive neutral stochastic integro‐differential equations with infinite delay, Asian J. Control, Volume 17 (2015), pp. 1233-1242
[25] Asymptotic behavior, attracting and quasi-invariant sets for impulsive neutral SPFDE driven by Levy noise, Stoch. Dyn., Volume 18 (2018), pp. 1-21
[26] Controllability for impulsive neutral stochastic delay partial differential equations driven by fBm and Levy noise, Stoch. Dyn., Volume 21 (2021), pp. 1-24
[27] Controllability of nonlocal second order impulsive neutral stochastic functional integro-differential equations with delay and Poisson jumps, Cogent Eng., Volume 2 (2015), pp. 1-16
[28] Approximate controllability of nonlocal neutral fractional integro-differential equations with finite delay, J. Dyn. Control Syst., Volume 22 (2016), pp. 485-504
[29] Applied Theory of Functional Differential Equations, Kluwer, Dordrecht, 1992
[30] Stability of neutral type functional differential equations, Nonlinear Anal., Volume 6 (1982), pp. 873-910
[31] Wiener integrals, Malliavin calculus and covariance measure structure, J. Funct. Anal., Volume 249 (2007), pp. 92-142
[32] Neutral stochastic functional differential evolution equations driven by Rosenblatt process with varying-time delays, Proyecciones, Volume 38 (2019), pp. 665-689
[33] Neutral stochastic functional differential equations driven fractional Brownian motion and Poisson point processes, Gulf J. Math., Volume 4 (2016), pp. 1-14
[34] Rate of convergence to the Rosenblatt distribution for additive functionals of stochastic processes with long-range dependence, J. Appl. Math. Stochastic Anal., Volume 14 (2001), pp. 27-46
[35] On the linear heat equation with fading memory, SIAM J. Math. Anal., Volume 21 (1990), pp. 1213-1224
[36] Wiener integrals with respect to the Hermite process and a non central limit theorem, Stoch. Anal. Appl., Volume 25 (2007), pp. 1043-1056
[37] Selfsimilar processes with stationary increments in the second Wiener chaos, Probab. Math. Statist., Volume 32 (2012), pp. 167-186
[38] On the distribution of the Rosenblatt process, Statist. Probab. Lett., Volume 83 (2013), pp. 1490-1495
[39] Approximate controllability of fractional integro-differential equations involving nonlocal initial conditions, Bound. Value Probl., Volume 2013 (2013), pp. 1-16
[40] On the approximate controllability of fractional evolution equations with compact analytic semigroup, J. Comput. Appl. Math., Volume 259 (2014), pp. 194-204
[41] Robust reliable control for neutral-type nonlinear systems with time-varying delays, Rep. Math. Phys., Volume 74 (2014), pp. 181-203
[42] Stochastic Differential Equations and Applications, Horwood Publishing Limited, Chichester, 1997
[43] Optimal control of fractional diffusion equation, Comput. Math. Appl., Volume 61 (2011), pp. 68-78
[44] New criteria for exponential stability of linear time-varying differential systems with delay, Taiwanese J. Math., Volume 18 (2014), pp. 1759-1774
[45] Stochastic Differential Equations, 6th ed., Springer, New York, 2005
[46] Semi--Riemannian geomerty with applications to relativity, Academic Press, London, 1983
[47] Existence results for impulsive neutral functional integrodifferential equations with infinite delay, Nonlinear Anal., Volume 71 (2009), pp. 3152-3162
[48] Stochastic Partial Differential Equations with Levy Noise, Cambridge University Press, Cambridge, 2007
[49] Regularization and integral representations of Hermite processes, Statist. Probab. Lett., Volume 80 (2010), pp. 2014-2023
[50] Stochastic Integration and Differential Equations, 2nd ed., Springer-Verlag, Berlin, 2004
[51] An approach to non-linear control problems using fixed point methods, degree theory and pseudo inverses, Numer. Func. Anal. Optim., Volume 7 (1985), pp. 197-219
[52] Nonlocal Cauchy problem for analytic resolvent integrodifferential equations in Banach spaces, Appl. Math. Comput., Volume 204 (2008), pp. 352-362
[53] Approximate controllability of stochastic differential systems driven by a Levy process, Internat. J. Control, Volume 86 (2013), pp. 1158-1164
[54] Approximate controllability of impulsive differential equations with state-dependent delay, Internat. J. Control, Volume 83 (2010), pp. 387-393
[55] Controllability for a class of fractional-order neutral evolution control systems, Appl. Math. Comput., Volume 218 (2012), pp. 10334-10340
[56] Complete controllability of stochastic evolution equations with jumps, Rep. Math. Phys., Volume 68 (2011), pp. 163-174
[57] Weak convergence to the fractional Brownian motion and to the Rosenblatt process, Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete, Volume 31 (1975), pp. 287-302
[58] Stochastic evolution equations with fractional Brownian motion, Probab. Theory Related Fields, Volume 127 (2003), pp. 186-204
[59] A note on the lack of exact controllability for mild solutions in Banach spaces, SIAM J. Control Optim., Volume 15 (1977), pp. 407-411
[60] Analysis of the Rosenblatt process, ESAIM Probab. Stat., Volume 12 (2008), pp. 230-257
[61] Constructed nets with perturbations for equilibrium and fixed point problems, J. Inequal. Appl., Volume 2014 (2014), pp. 1-14 | DOI
Cité par Sources :