Controllability of impulsive stochastic functional integrodifferential equations driven by Rosenblatt process and Lévy noise
Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 2, p. 152-171.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we develop controllability findings for impulsive neutral stochastic delay partial integrodifferential equations in Hilbert spaces driven by Rosenblatt process and Lévy noise. A novel set of adequate requirements is obtained by utilizing a fixed point method without imposing a stringent compactness constraint on the semigroup. The observed results represent a generalization and continuation of previous findings on this topic. Finally, an example is given to demonstrate how the acquired findings may be used.
DOI : 10.22436/jnsa.015.02.06
Classification : 35B35, 39B82, 93E03, 60H15
Keywords: Stochastic functional integrodifferential equations, resolvent operator, rosenblatt process, Lévy noise, controllability

Hamit, M. H. M. 1 ; Bete, K. H.  2 ; Mahamat, B. I.  3 ; Diop, M. A.  4

1 UFR SAT Departement de Mathematiques, Universite Gaston Berger de Saint-Louis, B. P234, Saint-Louis, Senegal
2 Institut de Mathematiques et de Sciences Physiques, B. P 613 Porto-Novo, Benin
3 UFR SAT Departement de Mathematiques, Universite Gaston Berger de Saint-Louis, B. P234, Saint-Louis, Senegal
4 UFR SAT Departement de Mathematiques, Universite Gaston Berger de Saint-Louis, B. P234, Saint-Louis, Senegal;UMMISCO UMI 209 IRD/UPMC, Bondy, France
@article{JNSA_2022_15_2_a5,
     author = {Hamit, M. H. M. and Bete, K. H.  and  Mahamat,  B. I.  and Diop, M. A. },
     title = {Controllability of impulsive stochastic functional integrodifferential equations driven by {Rosenblatt} process and {L\'evy} noise},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {152-171},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2022},
     doi = {10.22436/jnsa.015.02.06},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.02.06/}
}
TY  - JOUR
AU  - Hamit, M. H. M.
AU  - Bete, K. H. 
AU  -  Mahamat,  B. I. 
AU  - Diop, M. A. 
TI  - Controllability of impulsive stochastic functional integrodifferential equations driven by Rosenblatt process and Lévy noise
JO  - Journal of nonlinear sciences and its applications
PY  - 2022
SP  - 152
EP  - 171
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.02.06/
DO  - 10.22436/jnsa.015.02.06
LA  - en
ID  - JNSA_2022_15_2_a5
ER  - 
%0 Journal Article
%A Hamit, M. H. M.
%A Bete, K. H. 
%A  Mahamat,  B. I. 
%A Diop, M. A. 
%T Controllability of impulsive stochastic functional integrodifferential equations driven by Rosenblatt process and Lévy noise
%J Journal of nonlinear sciences and its applications
%D 2022
%P 152-171
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.02.06/
%R 10.22436/jnsa.015.02.06
%G en
%F JNSA_2022_15_2_a5
Hamit, M. H. M.; Bete, K. H. ;  Mahamat,  B. I. ; Diop, M. A. . Controllability of impulsive stochastic functional integrodifferential equations driven by Rosenblatt process and Lévy noise. Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 2, p. 152-171. doi : 10.22436/jnsa.015.02.06. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.02.06/

[1] Abry, P.; Pipiras, V. Wavelet-based synthesis of the Rosenblatt process, Signal Process, Volume 86 (2006), p. 23326-2339

[2] Ahmed, H. M. Approximate controllability of impulsive neutral stochastic differential equations with fractional Brownian motion in a Hilbert space, Adv. Differential Equ., Volume 2014 (2014), pp. 1-11

[3] Anh, C. T.; Hien, L. V. Exponential stability of solutions to semilinear parabolic equations with delays, Taiwanese J. Math., Volume 16 (2012), pp. 2133-2151

[4] Arthi, G.; Balachandran, K. Controllability of damped second-order neutral functional differential systems with impulses, Taiwanese J. Math., Volume 16 (2012), pp. 89-106

[5] Boudaoui, A.; Lakhel, E. Controllability of stochastic impulsive neutral functional differential equations driven by fractional Brownian motion with infinite delay, Differ. Equ. Dyn. Syst., Volume 26 (2018), pp. 247-263

[6] Boudaoui, A.; Lakhel, E. Controllability of impulsive neutral stochastic integrodifferentialsystems driven by fractional Brownian motion with delay and Poisson jumps, Proyecciones (Antofagasta, Online), Volume 2021 (2021), pp. 1-18

[7] Browder, F. E.; Petryshyn, W. V. Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl., Volume 20 (1967), pp. 197-228

[8] Chen, M. Approximate controllability of stochastic equations in a Hilbert space with fractional Brownian motions, Stoch. Dyn., Volume 15 (2015), pp. 1-16

[9] Chukwu, E. N. Differential Models and Neutral Systems for Controlling the Wealth of Nations, World Scientific Publishing Co., River Edge, 2001

[10] Cui, J.; Yan, L. T. Controllability of neutral stochastic evolution equations driven by fractional Brownian motion, Acta Math. Sci. Ser. B (Engl. Ed.), Volume 37 (2017), pp. 108-118

[11] Prato, G. Da; Zabczyk, J. Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 2014 | DOI

[12] Andrade, B. de; Santos, J. P. C. Dos Existence of solutions for a fractional neutral integro-differential equation with unbounded delay, Electron. J. Differential Equations, Volume 2012 (2012), pp. 1-13

[13] Debbouche, A.; Nieto, J. J. Sobolev type fractional abstract evolution equations with nonlocal conditions and optimal multi-controls, Appl. Math. Comput., Volume 245 (2014), pp. 74-85

[14] Dieye, M.; Diop, M. A.; Ezzinbi, K. On exponential stability of mild solutions for some stochastics partial integrodifferential equations, Statist. Probab. Lett., Volume 123 (2017), pp. 61-76

[15] Dobrushin, R. L.; Major, P. Non-central limit theorems for non-linear functionals of Gaussian fields, Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete, Volume 50 (1979), pp. 27-52

[16] Santos, J. P. C. Dos; Henriquez, H.; Hernandez, E. Existence results for neutral integro-differential equations with unbounded delay, J. Integral Equ. Appl., Volume 23 (2011), pp. 289-330

[17] Ezzinbi, K.; Toure, H.; Zabsonre, I. Local existence and regularity of solutions for some partial functional integrodifferential equations with infinite delay in Banach space, Nonlinear Anal., Volume 70 (2009), pp. 3378-3389 | DOI

[18] Gawarecki, L.; Mandrekar, V. Stochastic Differential Equations in Infinite Dimensions with Applications to Stochastic Partial Differential Equations, Probability and its Applications, Springer, Heidelberg, 2011

[19] Grimmer, R. C. Resolvent operators for integral equations in a Banach space, Trans. Amer. Math. Soc., Volume 273 (1982), pp. 333-349 | DOI

[20] Hale, J. K.; Meyer, K. R. A class of functional equations of neutral type, American Mathematical Society, Providence, 1967

[21] Hale, J. K.; Lunel, S. M. Verduyn Introduction to functional differential equations, Springer-Verlag, New York, 1993 | DOI

[22] Henriquez, H. R.; Santos, J. P. C. Dos Differentiability of solutions of abstract neutral integro-differential equations, J. Integral Equations Appl., Volume 25 (2013), pp. 47-77

[23] Hernandez, E.; O'Regan, D. Controllability of Volterra Fredholm type systems in Banach spaces, J. Franklin Inst., Volume 346 (2009), pp. 95-101

[24] Huan, D. D. On the controllability of nonlocal second‐order impulsive neutral stochastic integro‐differential equations with infinite delay, Asian J. Control, Volume 17 (2015), pp. 1233-1242

[25] Huan, D. D.; Agarwal, R. P. Asymptotic behavior, attracting and quasi-invariant sets for impulsive neutral SPFDE driven by Levy noise, Stoch. Dyn., Volume 18 (2018), pp. 1-21

[26] Huan, D. D.; Agarwal, R. P. Controllability for impulsive neutral stochastic delay partial differential equations driven by fBm and Levy noise, Stoch. Dyn., Volume 21 (2021), pp. 1-24

[27] Huan, D. D.; Gao, H. J. Controllability of nonlocal second order impulsive neutral stochastic functional integro-differential equations with delay and Poisson jumps, Cogent Eng., Volume 2 (2015), pp. 1-16

[28] Jeet, K.; Bahuguna, D. Approximate controllability of nonlocal neutral fractional integro-differential equations with finite delay, J. Dyn. Control Syst., Volume 22 (2016), pp. 485-504

[29] Kolmanovskii, V. B.; Myshkis, A. Applied Theory of Functional Differential Equations, Kluwer, Dordrecht, 1992

[30] Kolmanovskii, V. B.; Nosov, V. R. Stability of neutral type functional differential equations, Nonlinear Anal., Volume 6 (1982), pp. 873-910

[31] Kruk, I.; Russo, F.; Tudor, C. A. Wiener integrals, Malliavin calculus and covariance measure structure, J. Funct. Anal., Volume 249 (2007), pp. 92-142

[32] Lakhel, E. Neutral stochastic functional differential evolution equations driven by Rosenblatt process with varying-time delays, Proyecciones, Volume 38 (2019), pp. 665-689

[33] Lakhel, E.; Hajji, S. Neutral stochastic functional differential equations driven fractional Brownian motion and Poisson point processes, Gulf J. Math., Volume 4 (2016), pp. 1-14

[34] Leonenko, N. N.; Ahn, V. V. Rate of convergence to the Rosenblatt distribution for additive functionals of stochastic processes with long-range dependence, J. Appl. Math. Stochastic Anal., Volume 14 (2001), pp. 27-46

[35] Lunardi, A. On the linear heat equation with fading memory, SIAM J. Math. Anal., Volume 21 (1990), pp. 1213-1224

[36] Maejima, M.; Tudor, C. A. Wiener integrals with respect to the Hermite process and a non central limit theorem, Stoch. Anal. Appl., Volume 25 (2007), pp. 1043-1056

[37] Maejima, M.; Tudor, C. A. Selfsimilar processes with stationary increments in the second Wiener chaos, Probab. Math. Statist., Volume 32 (2012), pp. 167-186

[38] Maejima, M.; Tudor, C. A. On the distribution of the Rosenblatt process, Statist. Probab. Lett., Volume 83 (2013), pp. 1490-1495

[39] Mahmudov, N. I.; Zorlu, S. Approximate controllability of fractional integro-differential equations involving nonlocal initial conditions, Bound. Value Probl., Volume 2013 (2013), pp. 1-16

[40] Mahmudov, N. I.; Zorlu, S. On the approximate controllability of fractional evolution equations with compact analytic semigroup, J. Comput. Appl. Math., Volume 259 (2014), pp. 194-204

[41] Mathiyalagan, K.; Sakthivel, R.; Park, J. H. Robust reliable control for neutral-type nonlinear systems with time-varying delays, Rep. Math. Phys., Volume 74 (2014), pp. 181-203

[42] Mao, X. R. Stochastic Differential Equations and Applications, Horwood Publishing Limited, Chichester, 1997

[43] Mophou, G. M. Optimal control of fractional diffusion equation, Comput. Math. Appl., Volume 61 (2011), pp. 68-78

[44] Ngoc, P. H. A.; Tinh, C. T. New criteria for exponential stability of linear time-varying differential systems with delay, Taiwanese J. Math., Volume 18 (2014), pp. 1759-1774

[45] Øksendal, B. Stochastic Differential Equations, 6th ed., Springer, New York, 2005

[46] O'Neill, B. Semi--Riemannian geomerty with applications to relativity, Academic Press, London, 1983

[47] Park, J. Y.; Balachandtran, K.; Annapoorani, N. Existence results for impulsive neutral functional integrodifferential equations with infinite delay, Nonlinear Anal., Volume 71 (2009), pp. 3152-3162

[48] Peszat, S.; Zabczyk, J. Stochastic Partial Differential Equations with Levy Noise, Cambridge University Press, Cambridge, 2007

[49] Pipiras, V.; Taqqu, M. S. Regularization and integral representations of Hermite processes, Statist. Probab. Lett., Volume 80 (2010), pp. 2014-2023

[50] Protter, P. E. Stochastic Integration and Differential Equations, 2nd ed., Springer-Verlag, Berlin, 2004

[51] Quinn, M. D.; Carmichael, N. An approach to non-linear control problems using fixed point methods, degree theory and pseudo inverses, Numer. Func. Anal. Optim., Volume 7 (1985), pp. 197-219

[52] Kumar, R. Ravi Nonlocal Cauchy problem for analytic resolvent integrodifferential equations in Banach spaces, Appl. Math. Comput., Volume 204 (2008), pp. 352-362

[53] Ren, Y.; Dai, H. L.; Sakthivel, R. Approximate controllability of stochastic differential systems driven by a Levy process, Internat. J. Control, Volume 86 (2013), pp. 1158-1164

[54] Sakthivel, R.; Anandhi, E. Approximate controllability of impulsive differential equations with state-dependent delay, Internat. J. Control, Volume 83 (2010), pp. 387-393

[55] Sakthivel, R.; Mahmudov, N. I.; Nieto, J. J. Controllability for a class of fractional-order neutral evolution control systems, Appl. Math. Comput., Volume 218 (2012), pp. 10334-10340

[56] Sakthivel, R.; Ren, Y. Complete controllability of stochastic evolution equations with jumps, Rep. Math. Phys., Volume 68 (2011), pp. 163-174

[57] Taqqu, M. S. Weak convergence to the fractional Brownian motion and to the Rosenblatt process, Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete, Volume 31 (1975), pp. 287-302

[58] Tindel, S.; Tudor, C. A.; Viens, F. Stochastic evolution equations with fractional Brownian motion, Probab. Theory Related Fields, Volume 127 (2003), pp. 186-204

[59] Triggiani, R. A note on the lack of exact controllability for mild solutions in Banach spaces, SIAM J. Control Optim., Volume 15 (1977), pp. 407-411

[60] Tudor, C. A. Analysis of the Rosenblatt process, ESAIM Probab. Stat., Volume 12 (2008), pp. 230-257

[61] Yao, Y. H.; Cho, Y. J.; Liou, Y.-C.; Agarwal, R. P. Constructed nets with perturbations for equilibrium and fixed point problems, J. Inequal. Appl., Volume 2014 (2014), pp. 1-14 | DOI

Cité par Sources :