Threshold dynamics of an SEAIR epidemic model with application to COVID-19
Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 2, p. 136-151.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, a Susceptible-Exposed-Asymptomatic-Infectious-Recovered (SEAIR) epidemic model with application to COVID-19 is established by capturing the key features of the disease. The global dynamics of the model is analyzed by constructing appropriate Lyapunov functions utilizing the basic reproduction number $R_0$ as an index. We obtain that when $R_{0}1$, the disease-free equilibrium is globally asymptotically stable. While for $R_{0}>1$, the endemic equilibrium is globally asymptotically stable. Furthermore, we consider the pulse vaccination for the disease and give an impulsive differential equations model. The definition of the basic reproduction number $R_{0}$ of this system is given by utilizing the next generation operator. By the comparison theorem and persistent theory, we obtain that when $R_{0}1$}, the disease-free periodic solution is globally asymptotically stable. Otherwise, the disease will persist and there will be at least one nontrivial periodic solution. Numerical simulations to verify our conclusions are given at the end of each of these theorems.
DOI : 10.22436/jnsa.015.02.05
Classification : 34C60, 37C75, 92B05
Keywords: COVID-19, SEAIR, Lyapunov function, global stability, pulse vaccination, persistent theory

Zheng, Z. 1 ; Yang, Y.  1

1 School of Mathematics and Statistics, Shandong Normal University, Jinan, 250014, P. R. China
@article{JNSA_2022_15_2_a4,
     author = {Zheng, Z. and Yang, Y. },
     title = {Threshold dynamics of an {SEAIR} epidemic model with application to {COVID-19}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {136-151},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2022},
     doi = {10.22436/jnsa.015.02.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.02.05/}
}
TY  - JOUR
AU  - Zheng, Z.
AU  - Yang, Y. 
TI  - Threshold dynamics of an SEAIR epidemic model with application to COVID-19
JO  - Journal of nonlinear sciences and its applications
PY  - 2022
SP  - 136
EP  - 151
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.02.05/
DO  - 10.22436/jnsa.015.02.05
LA  - en
ID  - JNSA_2022_15_2_a4
ER  - 
%0 Journal Article
%A Zheng, Z.
%A Yang, Y. 
%T Threshold dynamics of an SEAIR epidemic model with application to COVID-19
%J Journal of nonlinear sciences and its applications
%D 2022
%P 136-151
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.02.05/
%R 10.22436/jnsa.015.02.05
%G en
%F JNSA_2022_15_2_a4
Zheng, Z.; Yang, Y. . Threshold dynamics of an SEAIR epidemic model with application to COVID-19. Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 2, p. 136-151. doi : 10.22436/jnsa.015.02.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.02.05/

[1] Agarwal, P.; Agarwal, R. P.; Ruzhansky, M. Special Functions and Analysis of Differential Equations, Chapman and Hall/CRC, New York, 2020

[2] Agarwal, P.; Baleanu, D.; Chen, Y. Q.; Momani, S.; Machado, J. A. T. Fractional Calculus, Springer, Singapore, 2018 | DOI

[3] Agarwal, P.; Deniz, S.; Jain, S.; Alderremy, A. A.; Aly, S. A new analysis of a partial differential equation arising in biology and population genetics via semi analytical techniques Physica A: Statistical Mechanics and its Applications, Physisa A, Volume 542 (2020), pp. 1-12

[4] Agarwal, P.; Dragomir, S. S.; Jleli, M.; Samet, B. Advances in Mathematical Inequalities and Applications, Birkhäuser/Springer, Singapore, 2018

[5] Agarwal, P.; Nieto, J. J.; Ruzhansky, M.; Torres, D. F. M. Analysis of Infectious Disease Problems (Covid-19) and Their Global Impact, Springer Singapore, Singapore, 2021

[6] Atangana, A. Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?, Chaos Solitons Fractals, Volume 136 (2020), pp. 1-38

[7] Atangana, A.; Araz, S. I. Mathematical model of COVID-19 spread in Turkey and South Africa: theory, methods, and applications, Adv. Difference Equ., Volume 2020 (2020), pp. 1-89

[8] Atangana, A.; Araz, S. I. Modeling and forecasting the spread of COVID-19 with stochastic and deterministic approaches: Africa and Europe, Adv. Difference Equ., Volume 2021 (2021), pp. 1-107

[9] Baba, I. A.; Yusuf, A.; Nisar, K. S.; Abdel-Aty, A. H.; Nofal, T. A. Mathematical model to assess the imposition of lockdown during COVID-19 pandemic, Results Phys., Volume 20 (2021), pp. 1-10

[10] Basnarkov, L. SEAIR Epidemic spreading model of COVID-19, Chaos Solitons Fractals, Volume 142 (2021), pp. 1-15

[11] Domenico, L. D.; Pullano, G.; Sabbatini, C. E.; Boelle, P. Y.; Colizza, V. Expected impact of reopening schools after lockdown on COVID-19 epidemic in Ile-de-France, Nat. Commun., Volume 12 (2021), pp. 1-12 | DOI

[12] Giordano, G.; Blanchini, F.; Bruno, R.; Colaneri, P.; Filippo, A. Di; Matteo, A. Di; Colaneri, M. Modelling the COVID-19 epidemic and implementation of population-wide interventions in Italy, Nat. Med., Volume 26 (2020), pp. 1-6

[13] He, X.; Lau, E. H. Y.; Wu, P.; Deng, X. L.; Wang, J.; Hao, X. X.; Lau, Y. C.; Wong, J. Y.; Guan, Y. J.; Tan, X. G.; Mo, X. N.; Chen, Y. Q.; Liao, B. L.; Chen, W. L.; Hu, F. G.; Zhang, Q.; Zhong, M. Q.; Wu, Y. R.; Zhao, L. Z.; Zhang, F. C.; Cowling, B. J.; Li, F.; Leung, G. M. Temporal dynamics in viral shedding and transmissibility of COVID-19, Nat. Med., Volume 26 (2020), pp. 672-675

[14] Hussain, G.; Khan, T.; Khan, A.; Inc, M.; Zaman, G.; Nisar, K. S.; Akgül, A. Modeling the dynamics of novel coronavirus (COVID-19) via stochastic epidemic model, Alexandria Eng. J., Volume 60 (2021), pp. 4121-4130

[15] Khalil, H. K. Nonlinear Systems, Prentice-Hall, Upper Saddle River, 2002 | Zbl

[16] Korobeinikov, A. Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission, Bull. Math. Biology, Volume 30 (2006), pp. 615-626

[17] Korobeinikov, A.; Maini, P. K. Non-linear incidence and stability of infectious disease models, Math. Med. Biol., Volume 22 (2005), pp. 113-128

[18] LaSalle, J. P. The Stability of Dynamical Systems,in: Regional Conference Series in Applied Mathematics, SIAM, Philadelaphia, 1976

[19] Lauer, S. A.; Grantz, K. H.; Bi, Q.; Jones, F. K.; Zheng, Q.; Meredith, H. R.; Azman, A. S.; Reich, N. G.; Lessler, J. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application, Ann. Intern. Med., Volume 172 (2020), pp. 577-582

[20] Li, X.; Bohner, M.; Wang, C. Impulsive differential equations: Periodic solutions and applications, Automatica, Volume 52 (2015), pp. 173-178

[21] Li, J. Q.; Xie, X.; Chen, Y. M. A new way of constructing Lyapunov functions with application to an SI epidemic model, Appl. Math. Lett., Volume 113 (2021), pp. 1-5

[22] Li, J. Q.; Yang, Y. L.; Zhou, Y. C. Global stability of an epidemic model with latent stage and vaccination, Nonlinear Anal. Real World Appl., Volume 12 (2011), pp. 2163-2173

[23] Rehman, A.; Singh, R.; Agarwal, P. Modeling, analysis and prediction of new variants of covid-19 and dengue co-infection on complex network, Chaos Solitons Fractals, Volume 150 (2021), pp. 1-19

[24] Ruzhansky, M.; Cho, Y. J.; Agarwal, P.; Area, I. Advances in Real and Complex Analysis with Applications, Birkhäuser/Springer, Singapore, 2017

[25] Salahshour, S.; Ahmadian, A.; Senu, N.; Baleanu, D.; Agarwal, P. On Analytical Solutions of the Fractional Differential Equation with Uncertainty: Application to the Basset Problem, Entropy, Volume 17 (2015), pp. 885-902

[26] Shaikh, A. S.; Shaikh, I. N.; Nisar, K. A mathematical model of COVID-19 using fractional derivative: outbreak in India with dynamics of transmission and control, Adv. Difference Equ., Volume 2020 (2020), pp. 1-19

[27] Shulgin, B.; Stone, L.; Agur, Z. ulase Vaccination Strategy in the SIR Epidemic Model, Bull. Math. Biol., Volume 60 (1998), pp. 1123-1148

[28] Stone, L.; Shulgin, B.; Agur, Z. Theoretical examination of the pulse vaccination policy in the SIR epidemic model, Math. Compu. Modelling, Volume 31 (2000), pp. 207-215

[29] Tang, B.; Wang, X.; Li, Q.; Bragazzi, N. L.; Tang, S.; Xiao, Y.; Wu, J. Estimation of the Transmission Risk of the 2019nCoV and Its Implication for Public Health Interventions, J. Clin. Med., Volume 9 (2020), pp. 1-13

[30] Din, R. ud; Seadawy, A. R.; Shah, K.; Ullah, A.; Baleanu, D. Study of global dynamics of COVID-19 via a new mathematical model, Results Phys., Volume 19 (2020), pp. 1-13

[31] Driessche, P. van den; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosc., Volume 180 (2002), pp. 29-48

[32] Wang, Y.; Lu, M. M.; Liu, J. Global stability of a delayed virus model with latent infection and Beddington-DeAngelis infection function, Appl. Math. Lett., Volume 107 (2020), pp. 1-9

[33] Wang, W. D.; Zhao, X.-Q. Threshold Dynamics for Compartmental Epidemic Models in Periodic Environments, J. Dynam. Differential Equations, Volume 20 (2008), pp. 699-717

[34] Yang, Y.; Xiao, Y. Threshold dynamics for an HIV model in periodic environments, J. Math. Anal. Appl., Volume 361 (2010), pp. 59-68

[35] Yang, Y. P.; Xiao, Y. The effects of population dispersal and pulse vaccination on disease control, Math. Comput. Modelling, Volume 52 (2010), pp. 1591-1604

[36] Zhao, X.-Q. Dynamical Systems in Population Biology, Springer-Verlag, New York, 2003

Cité par Sources :