Voir la notice de l'article provenant de la source International Scientific Research Publications
Harbau, M. H.  1 ; Ahmad, A. 2
@article{JNSA_2022_15_2_a3, author = {Harbau, M. H. and Ahmad, A.}, title = {Inertial hybrid {S-iteration} algorithm for fixed point of asymptotically nonexpansive mappings and equilibrium problems in a real {Hilbert} space}, journal = {Journal of nonlinear sciences and its applications}, pages = {123-135}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2022}, doi = {10.22436/jnsa.015.02.04}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.02.04/} }
TY - JOUR AU - Harbau, M. H. AU - Ahmad, A. TI - Inertial hybrid S-iteration algorithm for fixed point of asymptotically nonexpansive mappings and equilibrium problems in a real Hilbert space JO - Journal of nonlinear sciences and its applications PY - 2022 SP - 123 EP - 135 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.02.04/ DO - 10.22436/jnsa.015.02.04 LA - en ID - JNSA_2022_15_2_a3 ER -
%0 Journal Article %A Harbau, M. H. %A Ahmad, A. %T Inertial hybrid S-iteration algorithm for fixed point of asymptotically nonexpansive mappings and equilibrium problems in a real Hilbert space %J Journal of nonlinear sciences and its applications %D 2022 %P 123-135 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.02.04/ %R 10.22436/jnsa.015.02.04 %G en %F JNSA_2022_15_2_a3
Harbau, M. H. ; Ahmad, A. Inertial hybrid S-iteration algorithm for fixed point of asymptotically nonexpansive mappings and equilibrium problems in a real Hilbert space. Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 2, p. 123-135. doi : 10.22436/jnsa.015.02.04. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.02.04/
[1] Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., Volume 8 (2007), pp. 61-79
[2] Parallel Hybrid Iterative Methods for Variational Inequalities, Equilibrium Problems, and Common Fixed Point Problems, Vietnam J. Math., Volume 44 (2016), pp. 351-374
[3] Convergence theorems for pseudomonotone equilibrium problem, split feasibility problem, and multivalued strictly pseudocontractive mappings, Numer. Funct. Anal. Optim., Volume 40 (2019), pp. 1194-1214 | DOI
[4] From optimization and variational inequalities to equilibrium problems, Math. Student, Volume 63 (1994), pp. 123-145
[5] Inertial Douglas-Rachford splitting for monotone inclusion problems, Appl. Math. Comput., Volume 256 (2015), pp. 472-487
[6] Two inertial subgradient extragradient algorithms for variational inequalities with fixed-point constraints, Optimization, Volume 70 (2021), pp. 1337-1358
[7] Inertial-like subgradient extragradient methods for variational inequalities and fixed points of asymptotically nonexpansive and strictly pseudocontractive mappings, Mathematics, Volume 7 (2019), pp. 1-11
[8] Equilibrium programming in hilbert spaces, J. Nonlinear Convex Anal., Volume 6 (2005), pp. 117-136
[9] Modified inertial Mann algorithm and inertial CQ-algorithm for nonexpansive mappings, Optim. Lett., Volume 12 (2018), pp. 87-102
[10] A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., Volume 35 (1972), pp. 171-174 | DOI
[11] Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekker, New York, 1984
[12] Inertial hybrid self-adaptive subgradient extragradient method for fixed point of quasi-$\phi$-nonexpansive multivalued mappings and equilibrium problem, Adv. Theory Nonlinear Anal. Appl., Volume 5 (2021), pp. 507-522
[13] Hybrid linesearch algorithm for pseudomonotone equilibrium problem and fixed Points of Bregman quasi asymptotically nonexpansive mappings, J. Linear Topol. Algebra, Volume 10 (2021), pp. 153-177
[14] Modified extragradient method for pseudomonotone variational inequalities in infinite dimensional Hilbert spaces, Vietnam J. Math., Volume 49 (2020), pp. 1165-1183
[15] Parallel hybrid extragradient methods for pseudomonotone equilibrium problems and nonexpansive mappings, Numer. Algorithms, Volume 73 (2016), pp. 197-217
[16] Regularization extragradient methods for equilibrium programming in Hilbert spaces, Optimization, Volume 70 (2021), pp. 1-31 | DOI
[17] Strongly convergent algorithms by using new adaptive regularization parameter for equilibrium problems, J. Comput. Appl. Math., Volume 376 (2020), pp. 1-21
[18] A hybrid projective method for solving system of equilibrium problems with demicontractive mappings applicable in image restoration problems, Math. Methods Appl. Sci., Volume 43 (2020), pp. 3413-3431
[19] The extragradient method for finding saddle points and other problems, Matecon, Volume 12 (1976), pp. 747-756
[20] An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vision, Volume 51 (2015), pp. 311-325
[21] Convergence theorems for inertial KM-type algorithms, J. Comput. Appl. Math., Volume 219 (2008), pp. 223-236
[22] Mean value methods in iteration, Proc. Amer. Math. Soc., Volume 4 (1953), pp. 506-510
[23] Strong convergence of the CQ method for fixed point processes, Nonlinear Anal., Volume 64 (2006), pp. 2400-2411 | DOI
[24] Second-order differential proximal methods for equilibrium problems, JIPAM. J. Inequal. Pure Appl. Math., Volume 4 (2003), pp. 1-7
[25] Convergence of an adaptive penalty scheme for finding constrained equilibria, Nonlinear Anal., Volume 18 (1992), pp. 1159-1166
[26] On approximation of common solution of finite family of mixed equilibrium problems with $\mu-\eta$ relaxed monotone operator in a banach space, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., Volume 81 (2019), pp. 19-34
[27] An inertial $S$-iteration process, Fixed Point Theory Appl., Volume 2019 (2019), pp. 1-14
[28] Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, J. Math. Pures Appl., Volume 6 (1890), pp. 145-210 | EuDML
[29] Some methods of speeding up the convergence of iteration methods, U.S.S.R. Comput. Math. Math. Phys., Volume 4 (1964), pp. 1-17 | DOI | Zbl
[30] Applications of the S-iteration process to constrained minimization problems and split feasibility problems, Fixed Point Theory, Volume 12 (2011), pp. 187-204
[31] A general iterative method for equilibrium problems and fixed point in Hilbert space, Fixed point Theory Appl., Volume 2007 (2007), pp. 1-9
[32] A modified S-iteration process for G-nonexpansive mappings in Banach spaces with graphs, Numer. Algorithms, Volume 77 (2018), pp. 479-490 | DOI
[33] Strong convergence theorem for an equilibrium problem and a nonexpansive mapping, In: Nonlinear analysis and convex analysis, Volume 2007 (2007), pp. 609-617
[34] Weak and strong convergence theorems for a nonexpansive mapping and equilibrium problem, J. Optim. Theory Appl., Volume 133 (2007), pp. 359-370
[35] Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., Volume 331 (2007), pp. 506-515 | DOI
[36] Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., Volume 341 (2008), pp. 276-286 | DOI
[37] Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces, Nonlinear Anal., Volume 70 (2009), pp. 45-57
[38] Fixed point iteration processes for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., Volume 122 (1994), pp. 733-739
Cité par Sources :