Laplace transform of some special functions in terms of generalized Meijer $G$-functions
Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 2, p. 109-122.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The aim of this paper is to prove Laplace transform of some special functions in term of generalized Meijer $G$-functions. Some properties of generalized Meijer $G$-functions will be discussed. We investigate the Laplace transform of different hypergeometric functions in the form of generalized Meijer $G$-functions and hypergeometric functions. We derive Laplace transform of Bessel $k$-functions, hyper-Bessel $k$-functions, incomplete gamma $k$-function, sine $k$-integral, sine hyperbolic $k$-integral, Kelvin $k$-function in the form of generalized Meijer $G$-functions. In fact, we provide new approach to find Laplace transform of said functions.
DOI : 10.22436/jnsa.015.02.03
Classification : 33C60, 44A10, 33C20, 33C10
Keywords: Meijer \(G\)-functions, generalized Meijer \(G\)-functions, Laplace transform, generalized hypergeometric functions, generalized Bessel functions

Shah, S. A. H. 1 ; Mubeen, S. 1

1 Department of Mathematics, University of Sargodha, Sargodha, Pakistan
@article{JNSA_2022_15_2_a2,
     author = {Shah, S. A. H. and Mubeen, S.},
     title = {Laplace transform of some special functions in terms of generalized {Meijer} {\(G\)-functions}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {109-122},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2022},
     doi = {10.22436/jnsa.015.02.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.02.03/}
}
TY  - JOUR
AU  - Shah, S. A. H.
AU  - Mubeen, S.
TI  - Laplace transform of some special functions in terms of generalized Meijer \(G\)-functions
JO  - Journal of nonlinear sciences and its applications
PY  - 2022
SP  - 109
EP  - 122
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.02.03/
DO  - 10.22436/jnsa.015.02.03
LA  - en
ID  - JNSA_2022_15_2_a2
ER  - 
%0 Journal Article
%A Shah, S. A. H.
%A Mubeen, S.
%T Laplace transform of some special functions in terms of generalized Meijer \(G\)-functions
%J Journal of nonlinear sciences and its applications
%D 2022
%P 109-122
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.02.03/
%R 10.22436/jnsa.015.02.03
%G en
%F JNSA_2022_15_2_a2
Shah, S. A. H.; Mubeen, S. Laplace transform of some special functions in terms of generalized Meijer \(G\)-functions. Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 2, p. 109-122. doi : 10.22436/jnsa.015.02.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.02.03/

[1] Adamchik, V. The evaluation of integrals of Bessel functions via $G$-function identities, J. Comput. Appl. Math., Volume 64 (1995), pp. 283-290

[2] Agarwala, G.; Gaura, A.; Nisarb, K. S.; Abusufianb, A. H. On some properties of $\beta$-Laplace integral transform, J. Math. Computer Sci., Volume 23 (2021), pp. 315-320

[3] Beals, R.; Szmigielski, J. Meijer $G$-function: A Gentle Introduction, Notices Amer. Math. Soc., Volume 60 (2013), pp. 866-872

[4] Choi, J. S.; Agarwal, P. Certain unified integrals associated with Bessel functions, Bound. Value Probl., Volume 2013 (2013), pp. 1-9

[5] Diaz, R.; Pariguan, E. On hypergeometric functions and pochhammer $k$-symbol, Divulg. Mat., Volume 15 (2007), pp. 179-192 | EuDML | Zbl

[6] Diaz, R.; Teruel, C. $q,k$-Generalized Gamma and Beta Functions, J. Nonlinear Math. Phys., Volume 12 (2008), pp. 118-134

[7] Doetsch, G. Introduction to the theory and applications of the Laplace transformation, Springer-Verlag, New York, 1970

[8] Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G. Higher Transcendental Functions, Vol. I, McGraw-Hill Book Co., New York-Toronto-London, 1953

[9] Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G. Tables of Integral Transforms, Vol. I, McGraw-Hill Book Co., New York-Toronto-London, 1954

[10] Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. G. Higher Transcendental Function, Vol. III, McGraw-Hill Book Company, New York-Toronto-London, 1955

[11] Garra, R.; Goreno, R.; Polito, F.; Tomovski; Tomovski, Z. Hilfer-Prabhakar derivatives and some applications, Appl. Math. Comput., Volume 242 (2014), pp. 576-589

[12] Gradshteyn, I. S.; Ryzhik, I. M. Table of integrals, series, and products, Academic Press, San Diego, 2007

[13] Kokologiannaki, C. G. Properties and inequalities of generalized $k$-gamma, beta and zeta functions, Int. J. Contemp. Math. Sci., Volume 5 (2010), pp. 653-660

[14] Luke, Y. L. The Special Functions and Their Approximations, Academic Press, New York-London, 1969

[15] Mansour, M. Determining the $k$-generalized gamma function $\Gamma_k(x)$ by functional equations, Int. J. Contemp. Math. Sci., Volume 4 (2009), pp. 1037-1042

[16] Mathai, A. M.; Saxena, R. K. Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences, Springer-Verlag, New York, 1973

[17] Mathai, A. M.; Saxena, R. K.; Haubold, H. J. The $H$-Function, Springer, New York, 2010

[18] Meijer, C. S. Uber Whittakersche Bezw. Besselsche Funktionen und deren Produkte, Nieuw. Arch. Wiskunde, Volume 18 (1936), pp. 10-39

[19] Meijer, C. S. Multiplikationstheoreme fur die Funktion $G^{m,n}_{p,q}(z)$, Nederl. Akad. Wetensch. Proc. Ser. A, Volume 44 (1941), pp. 1062-1070

[20] Meijer, C. S. Neue Integralstellungen fur Whittakersche Funktionen I, Nederl. Akad. Wetensch. Proc. Ser. A, Volume 44 (1941), pp. 81-92

[21] Meijer, C. S. Expension theorems for the $G$-function, V. Nederl. Akad. Wetensch. Proc. Ser. A. 56 = Indagationes Math., Volume 15 (1953), pp. 349-397

[22] Mubeen, S.; Habibullah, G. M. $k$-fractional integrals and application, Int. J. Contemp. Math. Sci., Volume 7 (2012), pp. 89-94

[23] Mubeen, S.; Purohit, S. D.; Arshad, M.; Rahman, G. Extension of $k$-gamma, $k$-beta functions and $k$-beta distribution, J. Math. Anal., Volume 7 (2016), pp. 118-131

[24] Nisar, K. S.; Mondal, S. R.; Choi, J. S. Certain inequalities involving the $k$-Struve function, J. Inequal. Appl., Volume 2017 (2017), pp. 1-8

[25] Nisar, K. S.; Rahman, G.; Choi, J. S.; Mubeen, S.; Arshad, M. Generalized hypergeometric $k$-functions via $(k,s)$-fractional calculus, J. Nonlinear Sci. Appl., Volume 10 (2017), pp. 1791-1800

[26] Nisar, K. S.; Rahman, G.; Choi, J. S.; Mubeen, S.; Arshad, M. Certain Gronwall type inequalities associated with Riemann-Liouville $k$-and hadamard $k$-fractional derivatives and their applications, East Asian Math. J., Volume 34 (2018), pp. 249-263

[27] Nixon, F. E. Handbook of Laplace Transformation, Prentice-Hall, Englewood Cliffs, 1960

[28] Norlund, N. E. Hypergeometric Functions, Acta Math., Volume 94 (1955), pp. 289-349

[29] Oberhettinger, F.; Badii, L. Tables of Laplace Transforms, Springer-Verlag, New York-Heidelberg, 1973

[30] Pishkoo, A. A $G$-function form of radial states in carbon and hydrogen atoms: absorption or emission of radiation, Adv. Stud. Theor. Phys., Volume 9 (2015), pp. 145-154

[31] Prudnikov, A. P.; Brychkov, Y. A.; Marichev, O. I. Integrals and Series, Vol. 3, Gordon and Breach Science Publishers, New York, 1990

[32] Prudnikov, A. P.; Brychkov, Y. A.; Marichev, O. I. Integrals and Series, Vol. 4, Gordon and Breach Science Publishers, New York, 1992

[33] Prudnikov, A. P.; Brychkov, Y. A.; Marichev, O. I. Integrals and Series, Vol. 5, Gordon and Breach Science Publishers, New York, 1992

[34] Qureshi, M. I.; Kabra, D. K.; Baboo, M. S. Laplace Transforms of Some Special Functions of Mathematical Physics Using Mellin-Barnes Type Contour Integration, Int. J. Math. Stat. Invent., Volume 3 (2015), pp. 21-34

[35] Rahman, G.; Nisar, K. S.; Kim, T.; Mubeen, S.; Arshad, M. The Extended $k$-Mittag-Leffler Function and Its Properties, Proc. Jangjeon Math. Soc., Volume 21 (2018), pp. 487-495

[36] Rahman, G.; Nisar, K. S.; Kim, T.; Mubeen, S.; Arshad, M. Inequalities Involving Extended $k$-Gamma and $k$-Beta Functions, Proc. Jangjeon Math. Soc., Volume 21 (2018), pp. 143-153

[37] Rainville, E. D. Special functions, Macmillan Co., New York, 1960 | Zbl | DOI

[38] Saif, M.; Khan, F.; Nisar, K. S.; Araci, S. Modified Laplace transform and its properties, J. Math. Computer Sci., Volume 21 (2020), pp. 127-135

[39] Slater, L. J. Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, 1966

Cité par Sources :