Analysis and optimal control of a deterministic Zika virus model
Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 2, p. 88-108.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we consider a deterministic model explaining how Zika virus is transmitted between human and mosquito. The human population is divided into three groups as susceptible $(x_1)$, infected $(x_2)$, and treated $(x_3)$. Similarly, the mosquito population is divided into susceptible $(y_1)$ and infected $(y_2)$ groups. First, we conduct the local and global stability of the disease-free and endemic equilibrium points in relation to the basic reproductive number. We also study the sensitivity of the basic reproductive number and the endemic equilibrium point with respect to each parameters used in the model. Furthermore, we apply optimal control theory to show that there are cost effective control methods with the prevention effort $(u_1)$ of the contact between human and vector and the effort of treatment $(u_2)$ for human. Finally, we provide numerical simulations to support and illustrate some of the theoretical results.
DOI : 10.22436/jnsa.015.02.02
Classification : 92D30, 49Q12
Keywords: Deterministic Zika virus model, basic reproductive number, local and global stability, sensitivity analysis, optimal control

Denu, D. 1 ; Son, H. 2

1 Department of Mathematics, Georgia Southern University, 11935 Abercorn Street, Savannah, GA 31419, USA
2 Mathematics, Division of Science, Southern Wesleyan University, 907 Wesleyan Drive, Central, SC 29630, USA
@article{JNSA_2022_15_2_a1,
     author = {Denu, D. and Son, H.},
     title = {Analysis and optimal control of a deterministic {Zika} virus model},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {88-108},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2022},
     doi = {10.22436/jnsa.015.02.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.02.02/}
}
TY  - JOUR
AU  - Denu, D.
AU  - Son, H.
TI  - Analysis and optimal control of a deterministic Zika virus model
JO  - Journal of nonlinear sciences and its applications
PY  - 2022
SP  - 88
EP  - 108
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.02.02/
DO  - 10.22436/jnsa.015.02.02
LA  - en
ID  - JNSA_2022_15_2_a1
ER  - 
%0 Journal Article
%A Denu, D.
%A Son, H.
%T Analysis and optimal control of a deterministic Zika virus model
%J Journal of nonlinear sciences and its applications
%D 2022
%P 88-108
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.02.02/
%R 10.22436/jnsa.015.02.02
%G en
%F JNSA_2022_15_2_a1
Denu, D.; Son, H. Analysis and optimal control of a deterministic Zika virus model. Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 2, p. 88-108. doi : 10.22436/jnsa.015.02.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.02.02/

[1] Adams, B. M.; Banks, H. T.; Davidian, M.; Kwon, H.-D.; Tran, H. T.; Wynne, S. N.; Rosenberg, E. S. HIV dynamics: modeling, data analysis, and optimal treatment protocols, J. Comput. Appl. Math., Volume 184 (2005), pp. 10-49 | DOI

[2] Anderson, R. M.; May, R. M. Infectious diseases of humans: dynamics and control, Oxford university press, Oxford, 1992

[3] Bailey, N. T. J. The mathematical theory of infectious diseases and its applications, Hafner Press, New York, 1975

[4] Bewick, S.; Fagan, W. F.; Calabrese, J.; Agusto, F. Zika virus: endemic versus epidemic dynamics and implications for disease spread in the Americas, BioRxiv, New York, 2016

[5] Blitvich, B. Arboviruses: Molecular Biology, Evolution and Control. Nikos Vasilakis and Duane J. Gubler, Am. J. Trop. Med. Hyg., Volume 95 (2016), pp. 488-489

[6] Bogoch, I. I.; Brady, O. J.; Kraemer, M. U. G.; German, M.; Creatore, M. I.; Kulkarni, M. A.; Brownstein, J. S.; Mekaru, S. R.; Hay, S. I.; Groot, E.; Watts, A.; Khan, K. Anticipating the international spread of Zika virus from Brazil, The Lancet, Volume 387 (2016), pp. 335-336 | DOI

[7] Bonyah, E.; Okosun, K. O. Mathematical modeling of Zika virus, Asian Pac. J. Trop. Dis., Volume 6 (2016), pp. 673-679 | DOI

[8] Boret, S. E. B.; Escalante, R.; Villasana, M. Mathematical modelling of zika virus in Brazil, arXiv, Volume 2017 (2017), pp. 1-26

[9] Brasil, P.; Pereira, J. P.; Jr.; Moreira, M. E.; Nogueira, R. M. Ribeiro; Damasceno, L.; Wakimoto, M.; Rabello, R. S.; Valderramos, S. G.; Halai, U.-A.; Salles, T. S.; Zin, A. A.; Horovitz, D.; Daltro, P.; Boechat, M.; Gabaglia, C. Raja; Sequeira, P. Carvalho de; Pilotto, J. H.; Medialdea-Carrera, R.; Cunha, D. Cotrim da; Carvalho, L. M. Abreu de; Pone, M.; Siqueira, A. Machado; Calvet, G. A.; Baiao, A. E. Rodrigues; Neves, E. S.; Carvalho, P. R. Nassar de; Hasue, R. H.; Marschik, P. B.; Einspieler, C.; Janzen, C.; Cherry, J. D.; Filippis, A. M. Bispo de; Nielsen-Saines, K. Zika virus infection in pregnant women in Rio de Janeiro, N. Engl. J. Med., Volume 375 (2016), pp. 2321-2334

[10] Bussell, E. H.; Dangerfield, C. E.; Gilligan, C. A.; Cunniffe, N. J. Applying optimal control theory to complex epidemiological models to inform real-world disease management, Philosophical Transactions of the Royal Society B, Volume 374 (2019), pp. 1-7 | DOI

[11] Butler, ] G.; Waltman, P. Persistence in dynamical systems, J. Differential Equations, Volume 63 (1986), pp. 255-263 | DOI

[12] Cao-Lormeau, V.-M.; Blake, A.; Mons, S.; Lastere, S.; Roche, C.; Vanhomwegen, J.; Dub, T.; Baudouin, Laure; Teissier, A.; Larre, P.; Vial, A.-L.; Decam, C.; Choumet, V.; Halstead, S. K.; Willison, H. J.; Musset, L.; Manuguerra, J.-C.; Despres, P.; Fournier, E.; Mallet, H.-P.; Musso, D.; Fontanet, A.; Neil, J.; Ghawche, F. Guillain-Barre Syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study, The Lancet, Volume 387 (2016), pp. 1531-1539 | DOI

[13] Cauchemez, S.; Besnard, M.; Bompard, P.; Dub, T.; Guillemette-Artur, P.; Eyrolle-Guignot, D.; Salje, H.; Kerkhove, M. D. V.; Abadie, V.; Garel, C.; Fontanet, A.; Mallet, H.-P. Association between Zika virus and microcephaly in French Polynesia, 2013–15: a retrospective study, The Lancet, Volume 387 (2016), pp. 2125-2132 | DOI

[14] Cesari, L. Asymptotic behavior and stability problems in ordinary differential equations, Springer Science & Business Media, Berlin, 2012

[15] Chachuat, B. Nonlinear and dynamic optimization: From theory to practice, Laboratoire d’Automatique, Ecole Poly-technique Federale de Lausanne, Lausanne, 2007

[16] Culshaw, R. V.; Ruan, S.; Spiteri, R. J. Optimal HIV treatment by maximising immune response, J. Math. Biol., Volume 48 (2004), pp. 545-562 | DOI

[17] DeJesus, E. X.; Kaufman, C. Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations, Phys. Rev. A, Volume 35 (1987), pp. 5288-5290 | DOI

[18] Dick, G. W. A.; Kitchen, S. F.; Haddow, A. J. Zika virus (I). Isolations and serological specificity, Trans. R. Soc. Trop. Med. Hyg., Volume 46 (1952), pp. 509-520 | DOI

[19] Diekmann, O.; Heesterbeek, J. A. P. Mathematical epidemiology of infectious diseases: model building, analysis and interpretation, John Wiley & Sons, New York, 2000

[20] Diekmann, O.; Heesterbeek, J. A. P.; Metz, J. A. J. On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations, J. Math. Biol.,, Volume 28 (1990), pp. 365-382 | DOI

[21] Duffy, M. R.; Chen, T.-H.; Hancock, W. Thane; Powers, A. M.; Kool, J. L.; Lanciotti, R. S.; Pretrick, M.; Marfel, M.; Holzbauer, S.; Dubray, C.; Guillaumot, L.; Griggs, A.; Bel, M.; Laven, A. J. Lambert J.; Kosoy, O.; M.S.; Panella, A.; Biggerstaff, B. J.; Fischer, M.; Hayes, E. B. Zika virus outbreak on Yap Island, federated states of Micronesia, N. Engl. J. Med., Volume 360 (2009), pp. 2536-2543

[22] Elsaka, H.; Ahmed, E. A fractional order network model for ZIKA, BioRxiv, Volume 2016 (2016), pp. 1-10

[23] Fauci, A. S.; Morens, D. M. Zika virus in the Americas—yet another arbovirus threat, N. Engl. J. Med., Volume 374 (2016), pp. 601-604

[24] Fleming, W. H.; Rishel, R. W. Deterministic and stochastic optimal control, Springer Science & Business Media, Berlin (2012)

[25] Gaff, H.; Schaefer, E. Optimal control applied to vaccination and treatment strategies for various epidemiological models, Math. Biosci. Eng., Volume 6 (2009), pp. 469-492

[26] .Gani, S. R; Halawar, S. V. Optimal Control Analysis of Deterministic and Stochastic SIS Epidemic Model with Vaccination, Int. J. Stats. Med. Res., Volume 12 (2017), pp. 251-263

[27] Gao, D.; Lou, Y.; He, D.; Porco, T. C.; Kuang, Y.; Chowell, G.; Ruan, S. Prevention and control of Zika as a mosquito-borne and sexually transmitted disease: a mathematical modeling analysis, Sci. Rep., Volume 6 (2016), pp. 1-10 | DOI

[28] Gubler, D. J. The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle, Comp. Immunol. Microbiol. Infect. Dis., Volume 27 (2004), pp. 319-330 | DOI

[29] Haddow, A. D.; Schuh, A. J.; Yasuda, C. Y.; Kasper, M. R.; Heang, V.; R. Huy; Guzman, H.; Tesh, R. B.; Weaver, S. C. Genetic characterization of Zika virus strains: geographic expansion of the Asian lineage, PLOS Negl. Trop. Dis., Volume 6 (2012), pp. 1-7 | DOI

[30] Heukelbach, J.; Alencar, C. H.; Kelvin, A. A.; Oliveira, W. K. de; Cavalcanti, L. P. de Goes Zika virus outbreak in Brazil, J. Infect. Dev. Ctries, Volume 10 (2016), pp. 116-120

[31] Joshi, H. R. Optimal control of an HIV immunology model, Optim. Control Appl. Methods, Volume 23 (2002), pp. 199-213 | DOI

[32] Jung, E.; Lenhart, S.; Feng, Z. Optimal control of treatments in a two-strain tuberculosis model, Discrete Contin. Dyn. Syst. Ser. B, Volume 2 (2002), pp. 473-482 | DOI

[33] Kassa, S. M.; Ouhinou, A. The impact of self-protective measures in the optimal interventions for controlling infectious diseases of human population, J. Math. Biol., Volume 70 (2015), pp. 213-236 | DOI

[34] Keighley, C. L.; Saunderson, R. B.; Kok, J.; Dwyer, D. E. Viral exanthems, Curr. Opin. Infect. Dis., Volume 28 (2015), pp. 139-150

[35] Kibona, I. E.; C.Yang SIR model of spread of Zika virus infections: ZIKV linked to microcephaly simulations, Health, Volume 9 (2017), pp. 1190-1210 | DOI

[36] Kirschner, D.; Lenhart, S.; Serbin, S. Optimal control of the chemotherapy of HIV, J. Math. Biol., Volume 35 (1997), pp. 775-792 | DOI

[37] Kucharski, A. J.; Funk, S.; Eggo, R. M.; Mallet, H.-P.; Edmunds, W. J.; Nilles, E. J. Transmission dynamics of Zika virus in island populations: a modelling analysis of the 2013–14 French Polynesia outbreak, PLOS Negl. Trop. Dis., Volume 10 (2016), pp. 1-15 | DOI

[38] LaSalle, J. P. The stability of dynamical systems, Society for Industrial and Applied Mathematics, Philadelphia, 1976

[39] Lenhart, S.; Workman, J. T. Optimal control applied to biological models, Chapman & Hall/CRC, Boca Raton, 2007 | DOI

[40] Li, M. Y.; Wang, L. Global stability in some SEIR epidemic models, Springer, Volume 2002 (2002), pp. 295-311 | DOI

[41] Lucey, D. R.; Gostin, L. O. The emerging Zika pandemic: enhancing preparedness, Jama, Volume 315 (2016), pp. 865-866

[42] Miller, J. C. Mathematical models of SIR disease spread with combined non-sexual and sexual transmission routes, Infect. Dis. Model., Volume 2 (2017), pp. 35-55 | DOI

[43] Mlakar, J.; Korva, M.; Tul, N.; Popovic, M.; Poljsak-Prijatelj, M.; Mraz, J.; Kolenc, M.; Rus, K. Resman; Vipotnik, T. Vesnaver; Vodusek, V. Fabjan; Vizjak, A.; Pizem, J.; Petrovec, M.; Zupanc, T. Avsic Zika virus associated with microcephaly, N. Engl. J. Med., Volume 374 (2016), pp. 951-958

[44] Moreno, V. M.; Espinoza, B.; Bichara, D.; Holechek, S. A.; Castillo-Chavez, C. Role of short-term dispersal on the dynamics of Zika virus in an extreme idealized environment, Infect. Dis. Model., Volume 2 (2017), pp. 21-34 | DOI

[45] Musso, D.; Gubler, D. J. Zika virus, Clin. Microbiol. Rev., Volume 29 (2016), pp. 487-524 | DOI

[46] Oehler, E.; Fournier, E.; Leparc-Goffart, I.; Larre, P.; Cubizolle, S.; Sookhareea, C.; Lastere, S.; Ghawche, F. Increase in cases of Guillain-Barre syndrome during a Chikungunya outbreak, French Polynesia, Eurosurveillance, Volume 20 (2015), pp. 1-2

[47] Oehler, E.; Watrin, L.; Larre, P.; Leparc-Goffart, I.; Lastere, S.; F. Valour; Baudouin, L.; Mallet, H. P.; Musso, D.; Ghawche, F. Zika virus infection complicated by Guillain-Barre syndrome–case report, French Polynesia, December 2013, Eurosurveillance,, Volume 2014 (2014), pp. 1-3

[48] Ozair, M.; Lashari, A. A.; Jung, I. H.; Okosun, K. O. Stability analysis and optimal control of a vector-borne disease with nonlinear incidence, Discrete Dyn. Nat. Soc., Volume 2012 (2012), pp. 1-21 | DOI

[49] Perkins, T. A.; Siraj, A. S.; Ruktanonchai, C. W.; Kraemer, M. U. G.; Tatem, A. J. Model-based projections of Zika virus infections in childbearing women in the Americas, Nat. Microbiol., Volume 1 (2016), pp. 1-7 | DOI

[50] Reiter, P. 25 Surveillance and Control of Urban Dengue Vectors, Dengue and Dengue Hemorrhagic Fever,, , 2014

[51] Ritchie, S. A. 24 Dengue Vector Bionomics: Why Aedes aegypti is Such a Good Vector, Dengue and Dengue Hemorrhagic Fever, , 2014

[52] Rodrigues, H. S. Optimal control and numerical optimization applied to epidemiological models,, arXiv, Volume 2014 (2014), pp. 1-12

[53] Shutt, D. P.; Manore, C. A.; Pankavich, S.; Porter, A. T.; Valle, S. Y. Del Estimating the reproductive number, total outbreak size, and reporting rates for Zika epidemics in South and Central America, Epidemics, Volume 21 (2017), pp. 63-79 | DOI

[54] Smith, H. L.; Thieme, H. R. Dynamical systems and population persistence, American Mathematical Soc.,, New York, 2011 | DOI

[55] Suparit, P.; Wiratsudakul, A.; Modchang, C. A mathematical model for Zika virus transmission dynamics with a timedependent mosquito biting rate, Theor. Biol. Med. Model., Volume 15 (2018), pp. 1-11 | DOI

[56] Tusting, L. S.; Thwing, J.; Sinclair, D.; Fillinger, U.; Gimnig, J.; Bonner, K. E.; Bottomley, C.; Lindsay, S. W. Mosquito larval source management for controlling malaria, Cochrane Database Syst. Rev., , 2013 | DOI

[57] Driessche, P. Van den; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., Volume 180 (2002), pp. 29-48 | DOI

[58] Villela, D. A. M.; Bastos, L. S.; Carvalho, L. M. De; Cruz, O. G.; Gomes, M. F. C.; Durovni, B.; Lemos, M. C.; Saraceni, V.; Coelho, F. C.; Codeco, C. T. Zika in Rio de Janeiro: Assessment of basic reproduction number and comparison with dengue outbreaks, Epidemiol. Infect., Volume 145 (2017), pp. 1649-1657 | DOI

[59] Waltman, P. A brief survey of persistence in dynamical systems, Springer, Berlin, 1991 | DOI

[60] Wiratsudakul, A.; Suparit, P.; Modchang, C. Dynamics of Zika virus outbreaks: an overview of mathematical modeling approaches, PeerJ,, Volume 6 (2018), pp. 1-30 | DOI

[61] Zabczyk, J. Mathematical control theory: an introduction, Springer Science & Business Media, Berlin, 2009 | DOI

Cité par Sources :