Local and global existence of a nonlocal equation with a singular integral drift term
Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 1, p. 61-66.

Voir la notice de l'article provenant de la source International Scientific Research Publications

We study an initial value problem with fractional Laplacian and a singular integral drift term. This equation quantifies fractal interfaces in statistical mechanics. The singularity of the drift term is a generalization of existing results. Making use of some important boundedness properties of Calder\'on-Zygmund operator in $L_p$ and Lipschitz spaces, we obtain local and global existence theorems.
DOI : 10.22436/jnsa.015.01.05
Classification : 35Q82, 35C15
Keywords: Singular integration, nonlocal equations

Lu, Yingdong  1

1 IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, U.S.A.
@article{JNSA_2022_15_1_a4,
     author = {Lu, Yingdong },
     title = {Local and global existence of a nonlocal equation with a singular integral drift term},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {61-66},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2022},
     doi = {10.22436/jnsa.015.01.05},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.01.05/}
}
TY  - JOUR
AU  - Lu, Yingdong 
TI  - Local and global existence of a nonlocal equation with a singular integral drift term
JO  - Journal of nonlinear sciences and its applications
PY  - 2022
SP  - 61
EP  - 66
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.01.05/
DO  - 10.22436/jnsa.015.01.05
LA  - en
ID  - JNSA_2022_15_1_a4
ER  - 
%0 Journal Article
%A Lu, Yingdong 
%T Local and global existence of a nonlocal equation with a singular integral drift term
%J Journal of nonlinear sciences and its applications
%D 2022
%P 61-66
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.01.05/
%R 10.22436/jnsa.015.01.05
%G en
%F JNSA_2022_15_1_a4
Lu, Yingdong . Local and global existence of a nonlocal equation with a singular integral drift term. Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 1, p. 61-66. doi : 10.22436/jnsa.015.01.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.01.05/

[1] Biler, P.; Karch, G.; Woyczynski, W. A. Critical nonlinearity exponent and self-similar asymptotics for Levy conservation laws, Ann. Inst. Henri Poincare (C) Anal. Non Lineaire, Volume 18 (2001), pp. 613-637 | DOI

[2] Biler, P.; Woyczynski, W. A. Global and exploding solutions for nonlocal quadratic evolution problems, SIAM J. Appl. Math., Volume 59 (1999), pp. 845-869 | DOI

[3] Cannone, M. Ondelettes, paraproduits et Navier-Stokes, Diderot Editeur, Paris, 1995

[4] Ikeda, N.; Watanabe, S. Stochastic Differential Equations and Diffusion Processes, Elsevier Science, New York, 2014

[5] Jourdain, B.; Meleard, S.; Woyczynski, W. A. A probabilistic approach for nonlinear equations involving the fractional Laplacian and a singular operator, Potential Anal.,, Volume 23 (2005), pp. 55-81 | DOI

[6] Jr, J. A. Mann; Woyczynski, W. Growing fractal interfaces in the presence of self-similar hopping surface diffusion, Phys. A: Stat. Mech. Appl., Volume 291 (2001), pp. 159-183 | DOI

[7] Olivera, C.; Tudor, C. Density for solutions to stochastic differential equations with unbounded drift, Braz. J. Probab. Stat., Volume 33 (2019), pp. 520-531

[8] Ragusa, M. A. Elliptic boundary value problem in vanishing mean oscillation hypothesis, Comment. Math. Univ. Carolin., Volume 40 (1999), pp. 651-663

[9] Ragusa, M. A. Regularity of solutions of divergence form elliptic equations, Proc. Amer. Math. Soc., Volume 128 (2000), pp. 533-540 | DOI

[10] Stein, E. M. Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, 1993

[11] Zheng, T.; Li, H.; Tao, X. The boundedness of Calderon-Zygmund operators on Lipschitz spaces over spaces of homogeneous type, Bull. Braz. Math. Soc. (N.S.), Volume 51 (2020), pp. 653-669 | DOI

Cité par Sources :