Voir la notice de l'article provenant de la source International Scientific Research Publications
Lu, Yingdong  1
@article{JNSA_2022_15_1_a4, author = {Lu, Yingdong }, title = {Local and global existence of a nonlocal equation with a singular integral drift term}, journal = {Journal of nonlinear sciences and its applications}, pages = {61-66}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2022}, doi = {10.22436/jnsa.015.01.05}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.01.05/} }
TY - JOUR AU - Lu, Yingdong TI - Local and global existence of a nonlocal equation with a singular integral drift term JO - Journal of nonlinear sciences and its applications PY - 2022 SP - 61 EP - 66 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.01.05/ DO - 10.22436/jnsa.015.01.05 LA - en ID - JNSA_2022_15_1_a4 ER -
%0 Journal Article %A Lu, Yingdong %T Local and global existence of a nonlocal equation with a singular integral drift term %J Journal of nonlinear sciences and its applications %D 2022 %P 61-66 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.01.05/ %R 10.22436/jnsa.015.01.05 %G en %F JNSA_2022_15_1_a4
Lu, Yingdong . Local and global existence of a nonlocal equation with a singular integral drift term. Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 1, p. 61-66. doi : 10.22436/jnsa.015.01.05. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.01.05/
[1] Critical nonlinearity exponent and self-similar asymptotics for Levy conservation laws, Ann. Inst. Henri Poincare (C) Anal. Non Lineaire, Volume 18 (2001), pp. 613-637 | DOI
[2] Global and exploding solutions for nonlocal quadratic evolution problems, SIAM J. Appl. Math., Volume 59 (1999), pp. 845-869 | DOI
[3] Ondelettes, paraproduits et Navier-Stokes, Diderot Editeur, Paris, 1995
[4] Stochastic Differential Equations and Diffusion Processes, Elsevier Science, New York, 2014
[5] A probabilistic approach for nonlinear equations involving the fractional Laplacian and a singular operator, Potential Anal.,, Volume 23 (2005), pp. 55-81 | DOI
[6] Growing fractal interfaces in the presence of self-similar hopping surface diffusion, Phys. A: Stat. Mech. Appl., Volume 291 (2001), pp. 159-183 | DOI
[7] Density for solutions to stochastic differential equations with unbounded drift, Braz. J. Probab. Stat., Volume 33 (2019), pp. 520-531
[8] Elliptic boundary value problem in vanishing mean oscillation hypothesis, Comment. Math. Univ. Carolin., Volume 40 (1999), pp. 651-663
[9] Regularity of solutions of divergence form elliptic equations, Proc. Amer. Math. Soc., Volume 128 (2000), pp. 533-540 | DOI
[10] Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, 1993
[11] The boundedness of Calderon-Zygmund operators on Lipschitz spaces over spaces of homogeneous type, Bull. Braz. Math. Soc. (N.S.), Volume 51 (2020), pp. 653-669 | DOI
Cité par Sources :