Difference Cesàro sequence space defined by a sequence of modulus function
Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 1, p. 41-47.

Voir la notice de l'article provenant de la source International Scientific Research Publications

The purpose of this paper is to introduce the difference sequence space $ces(B^\mu_\Lambda, F, q)$ using sequence of modulus function $F = (f_i)$. We examine some topological properties of the space and also obtain some inclusion relations.
DOI : 10.22436/jnsa.015.01.03
Classification : 46A45, 40A05, 40C05
Keywords: Cesàro sequence space, difference sequence space, paranormed space

Sharma, Sunil K.  1

1 Department of mathematics , Cluster University of Jammu, Jammu-180001, J \(\&\) K, India
@article{JNSA_2022_15_1_a2,
     author = {Sharma, Sunil K. },
     title = {Difference {Ces\`aro} sequence space defined by a sequence of modulus function},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {41-47},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2022},
     doi = {10.22436/jnsa.015.01.03},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.01.03/}
}
TY  - JOUR
AU  - Sharma, Sunil K. 
TI  - Difference Cesàro sequence space defined by a sequence of modulus function
JO  - Journal of nonlinear sciences and its applications
PY  - 2022
SP  - 41
EP  - 47
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.01.03/
DO  - 10.22436/jnsa.015.01.03
LA  - en
ID  - JNSA_2022_15_1_a2
ER  - 
%0 Journal Article
%A Sharma, Sunil K. 
%T Difference Cesàro sequence space defined by a sequence of modulus function
%J Journal of nonlinear sciences and its applications
%D 2022
%P 41-47
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.01.03/
%R 10.22436/jnsa.015.01.03
%G en
%F JNSA_2022_15_1_a2
Sharma, Sunil K. . Difference Cesàro sequence space defined by a sequence of modulus function. Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 1, p. 41-47. doi : 10.22436/jnsa.015.01.03. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.01.03/

[1] Başar, F.; Altay, B. On the space of sequences of $p$-bounded variation and related matrix mappings, Ukrainian Math. J., Volume 55 (2003), pp. 136-147 | Zbl | DOI

[2] Başarir, M.; Kayikçi, M. On the generalized $B^m$-Riesz difference sequence spaces and $\beta$-property, J. Inequal. Appl., Volume 2009 (2009), pp. 1-18

[3] Dutta, H. On some difference sequence spaces, Pacific J. Sci. Tech., Volume 10 (2009), pp. 243-247

[4] Dutta, H. Some statistically convergent difference sequence spaces defined over real 2-normed linear space, Appl. Sci., Volume 12 (2010), pp. 37-47 | EuDML

[5] Esi, A. Generalized difference sequence spaces defined by Orlicz functions, Gen. Math., Volume 17 (2009), pp. 53-66

[6] Esi, A. Some classes of generalized difference paranormed sequence spaces associated with multiplier sequences, J. Comput. Anal. Appl., Volume 11 (2009), pp. 536-545

[7] Esi, A.; Işık, M. Some generalized difference sequence spaces, Thai J. Math., Volume 3 (2005), pp. 241-247

[8] Esi, A.; Tripathy, B. C. Strongly almost convergent generalized difference sequences associated with multiplier sequences, Math. Slovaca, Volume 57 (2007), pp. 339-348

[9] Esi, A.; Tripathy, B. C.; Sarma, B. On some new type generalized difference sequence spaces, Math. Slovaca, Volume 57 (2007), pp. 475-482

[10] Et, M.; Basarir, M. On some new generalized difference sequence spaces, Period. Math. Hungar., Volume 35 (1997), pp. 169-175

[11] Et, M.; Çolak, R. On some generalized difference sequence spaces, Soochow J. Math., Volume 21 (1995), p. 377-356

[12] Kizmaz, H. On certain sequences spaces, Canad. Math. Bull., Volume 24 (1981), pp. 169-176

[13] Lee, P. Y. Cesàro sequence spaces, Math. Chronicle, Volume 13 (1984), pp. 29-45

[14] Leibowitz, G. M. A note on the Cesaro sequence spaces, Tamkang J. Math., Volume 2 (1971), pp. 151-157

[15] Lui, Y. Q.; Wu, B. E.; Lee, P. Y. Method of sequence spaces, Guangdong of Science and Technology Press, China, 1996

[16] Maddox, I. J. Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc., Volume 100 (1986), pp. 161-166 | Zbl | DOI

[17] Maddox, I. J. Inclusion between FK spaces and Kuttner's theorem, Math. Proc. Cambridge Philos. Soc., Volume 101 (1987), pp. 523-527

[18] Mohiuddine, S. A.; Raj, K.; Mursaleen, M.; Alotaibi, A. Linear isomorphic spaces of fractional order difference operators, Alexandria Eng. J., Volume 60 (2021), pp. 1155-1164

[19] Mursaleen, M.; Alotaibi, A.; Sharma, S. K. Some new lacunary strong convergent vector-valued sequence spaces, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-8

[20] Mursaleen, M.; Sharma, S. K. Entire sequence spaces defined on locally convex Hausdorff topological space, Iran. J. Sci. Technol. Trans. A Sci., Volume 38 (2014), pp. 105-109

[21] Mursaleen, M.; Sharma, S. K.; Mohiuddine, S. A.; Kılıçman, A. New difference sequence spaces defined by Musielak-Orlicz function, Abstr. Appl. Anal., Volume 2014 (2014), pp. 1-9

[22] Raj, K.; Mohiuddine, S. A.; Mursaleen, M. Some generalized sequence spaces of invariant means defined by ideal and modulus functions in $n$-normed spaces, Italian J. Pure Appl. Math., Volume 39 (2018), pp. 579-595

[23] Raj, K.; Sharma, S. K. Difference sequence spaces defined by sequence of modulus function, Proyecciones, Volume 30 (2011), pp. 189-199

[24] Ruckle, W. H. FK spaces in which the sequence of coordinate vectors is bounded, Canadian J. Math., Volume 25 (1973), pp. 973-978

[25] Sanhan, W.; Suantai, S. On $k$-nearly uniform convex property in generalized Cesaro sequence spaces, Int. J. Math. Math. Sci., Volume 57 (2003), pp. 3599-3607

[26] Savas, E. On some generalized sequence spaces defined by a modulus, Indian J. pure Appl. Math., Volume 30 (1999), pp. 459-465

[27] Sharma, S. K. Generalized sequence spaces defined by a sequence of moduli, J. Egyptian Math. Soc., Volume 23 (2015), pp. 73-77

[28] Sharma, S. K.; Esi, A. Some $I$-convergent sequence spaces defined by using sequence of moduli and $n$-normed space, J. Egyptian Math. Soc., Volume 21 (2013), pp. 103-107

[29] Sharma, S. K.; Esi, A. Double sequence spaces defined by a sequence of modulus function over $n$-normed space, Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., Volume 53 (2014), pp. 117-134

[30] Shiue, J.-S. On the Cesaro sequence spaces, Tamkang J. Math., Volume 1 (1970), pp. 19-25

[31] Tripathy, B. C.; Esi, A. Generalized lacunary difference sequence spaces defined by Orlicz functions, Matimyas Mat., Volume 28 (2005), pp. 50-57

[32] Tripathy, B. C.; Esi, A. A new type of difference sequence spaces, Int. J. Sci. Tech., Volume 1 (2006), pp. 11-14

[33] Tripathy, B. C.; Esi, A.; Tripathy, B. On a new type of generalized difference Cesaro sequence spaces, Soochow J. Math., Volume 31 (2005), pp. 333-340

[34] Wilansky, A. Summability through functional analysis, North-Holland Publishing Co., Amsterdam, 1984 | Zbl

[35] Yaying, T.; Hazarika, B.; Mohiuddine, S. A.; Mursaleen, M.; Ansari, K. J. Sequence spaces derived by the triple band generalized Fibonacci difference operator, Adv. Difference Equ., Volume 2020 (2020), pp. 1-19

Cité par Sources :