Voir la notice de l'article provenant de la source International Scientific Research Publications
Cho, Ilwoo  1
@article{JNSA_2022_15_1_a1, author = {Cho, Ilwoo }, title = {Certain nonlinear functions acting on the vector space {\(\mathbb{H}^{n}\)} over the {Quaternions} {\(\mathbb{H}\)}}, journal = {Journal of nonlinear sciences and its applications}, pages = {14-40}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2022}, doi = {10.22436/jnsa.015.01.02}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.01.02/} }
TY - JOUR AU - Cho, Ilwoo TI - Certain nonlinear functions acting on the vector space \(\mathbb{H}^{n}\) over the Quaternions \(\mathbb{H}\) JO - Journal of nonlinear sciences and its applications PY - 2022 SP - 14 EP - 40 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.01.02/ DO - 10.22436/jnsa.015.01.02 LA - en ID - JNSA_2022_15_1_a1 ER -
%0 Journal Article %A Cho, Ilwoo %T Certain nonlinear functions acting on the vector space \(\mathbb{H}^{n}\) over the Quaternions \(\mathbb{H}\) %J Journal of nonlinear sciences and its applications %D 2022 %P 14-40 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.01.02/ %R 10.22436/jnsa.015.01.02 %G en %F JNSA_2022_15_1_a1
Cho, Ilwoo . Certain nonlinear functions acting on the vector space \(\mathbb{H}^{n}\) over the Quaternions \(\mathbb{H}\). Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 1, p. 14-40. doi : 10.22436/jnsa.015.01.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.01.02/
[1] A Spectral Representation of the Quaternions, Submitted to Comput. Methods & Funct. Theo., Volume 2020 (2020)
[2] Spectral Analysis of Equations over Quaternions, Submitted to Internat. Conf. Stochastic Processes Alge. Structures: From Theory towards Appl. (SPAS 2019) Vestera, Sweden, Published by Springer, Volume 2020 (2020)
[3] Geometric Algebra for Physicists, Cambridge University Press, Cambridge, 2003 | DOI
[4] On the Eigenvalues of Quaternion Matrices, Linear Multilinear Algebra, Volume 59 (2011), pp. 451-473 | DOI
[5] Eigenvalues and eigenvectors for the quaternion matrices of degree two, An. S¸ tiint¸. Univ. Ovidius Constant¸a Ser. Mat., Volume 10 (2002), pp. 39-44 | EuDML
[6] Einstein’s equations and Clifford algebra, Adv. Appl. Clifford Algebras, Volume 9 (1999), pp. 225-230 | DOI
[7] A Hilbert space problem book, Springer-Verlag, New York, 1982
[8] Linear Algebra Problem Book, Mathematical Association of America, Washington, DC, 1995
[9] Lectures on Quaternions, Hodges & Smith, Dublin, 1853
[10] Hypercomplex Numbers: an Elementary Introuction to Algebras, Springer-Verlag, New York, 1989
[11] Applied Quaternionic Analysis, Heldermann Verlag, Lemgo, 2003
[12] Quaternionic Eigenvalue Problem, J. Math. Phys., Volume 43 (2002), pp. 5815-5829 | DOI
[13] Eigenvalues and eigenvectors of quaternion matrices, J. Central China Normal Univ. Natur. Sci., Volume 29 (1995), pp. 407-411
[14] Hamilton and Jacobi meet again: quaternions and the eigenvalue problem, SIAM J. Matrix Anal. Appl.,, Volume 16 (1995), pp. 421-435 | DOI
[15] Distribution for the Standard Eigenvalues of Quaternion Matrices, Int. Math. Forum, Volume 7 (2012), pp. 831-838
[16] Topics in Quaternion Linear Algebra, Princeton University Press, Princeton, 2014 | DOI
[17] A history of non-Euclidean geometry: evolution of the concept of a geometric space, Springer-Verlag, New York, 1988
[18] Quaternionic Analysis, Math. Proc. Cambridge Philos. Soc., Volume 85 (1979), pp. 199-225
[19] Geometric algebra for computer graphics, Springer-Verlag, London, 2008 | DOI
[20] Quaternion Algebras, online version, , 2019
Cité par Sources :