Certain nonlinear functions acting on the vector space $\mathbb{H}^{n}$ over the Quaternions $\mathbb{H}$
Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 1, p. 14-40.

Voir la notice de l'article provenant de la source International Scientific Research Publications

In this paper, we consider a certain type of nonlinear functions acting on a finite-dimensional vector space $\mathbb{H}^{n}$ over the ring $\mathbb{H}$ of all quaternions, for $n$ $\in$ $\mathbb{N}.$ Our main results show that: (i) every quaternion $ {q\in\mathbb{H}}$ is classified by its spectrum of the realization under a canonical representation on $\mathbb{C}^{2}$; (ii) each vector of $\mathbb{H}^{n}$ is classified by $\mathbb{C}^{n}$ in an extended set-up of (i); and (iii) the (usual linear) spectral analysis on the matricial ring $ {M_{n}\left(\mathbb{C}\right)}$ of all $\left(n\times n\right)$-matrices (over $\mathbb{C}$) affects some fixed point theorems for our nonlinear functions on $\mathbb{H}^{n}$. In conclusion, we study the connections between the ``linear'' spectral theory over the complex numbers $\mathbb{C}$, and fixed point theorems for ``nonlinear'' functions over $\mathbb{H}$.
DOI : 10.22436/jnsa.015.01.02
Classification : 20G20, 46F30, 46T20, 47S10
Keywords: The quaternions, q-spectral forms, q-spectralizations, vector spaces over the quaternions

Cho, Ilwoo  1

1 Dept. of Math. and Stat., 421 Ambrose Hall, St. Ambrose Univ., 518 W. Locust St., Davenport, Iowa, 52803, USA
@article{JNSA_2022_15_1_a1,
     author = {Cho, Ilwoo },
     title = {Certain nonlinear functions acting on the vector space {\(\mathbb{H}^{n}\)} over the {Quaternions} {\(\mathbb{H}\)}},
     journal = {Journal of nonlinear sciences and its applications},
     pages = {14-40},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2022},
     doi = {10.22436/jnsa.015.01.02},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.01.02/}
}
TY  - JOUR
AU  - Cho, Ilwoo 
TI  - Certain nonlinear functions acting on the vector space \(\mathbb{H}^{n}\) over the Quaternions \(\mathbb{H}\)
JO  - Journal of nonlinear sciences and its applications
PY  - 2022
SP  - 14
EP  - 40
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.01.02/
DO  - 10.22436/jnsa.015.01.02
LA  - en
ID  - JNSA_2022_15_1_a1
ER  - 
%0 Journal Article
%A Cho, Ilwoo 
%T Certain nonlinear functions acting on the vector space \(\mathbb{H}^{n}\) over the Quaternions \(\mathbb{H}\)
%J Journal of nonlinear sciences and its applications
%D 2022
%P 14-40
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.01.02/
%R 10.22436/jnsa.015.01.02
%G en
%F JNSA_2022_15_1_a1
Cho, Ilwoo . Certain nonlinear functions acting on the vector space \(\mathbb{H}^{n}\) over the Quaternions \(\mathbb{H}\). Journal of nonlinear sciences and its applications, Tome 15 (2022) no. 1, p. 14-40. doi : 10.22436/jnsa.015.01.02. http://geodesic.mathdoc.fr/articles/10.22436/jnsa.015.01.02/

[1] Cho, I. A Spectral Representation of the Quaternions, Submitted to Comput. Methods & Funct. Theo., Volume 2020 (2020)

[2] Cho, I.; Jorgensen, P. E. T. Spectral Analysis of Equations over Quaternions, Submitted to Internat. Conf. Stochastic Processes Alge. Structures: From Theory towards Appl. (SPAS 2019) Vestera, Sweden, Published by Springer, Volume 2020 (2020)

[3] Doran, C.; Lasenby, A. Geometric Algebra for Physicists, Cambridge University Press, Cambridge, 2003 | DOI

[4] Farid, F. O.; Wang, Q.-W.; Zhang, F. On the Eigenvalues of Quaternion Matrices, Linear Multilinear Algebra, Volume 59 (2011), pp. 451-473 | DOI

[5] Flaut, C. Eigenvalues and eigenvectors for the quaternion matrices of degree two, An. S¸ tiint¸. Univ. Ovidius Constant¸a Ser. Mat., Volume 10 (2002), pp. 39-44 | EuDML

[6] Girard, P. R. Einstein’s equations and Clifford algebra, Adv. Appl. Clifford Algebras, Volume 9 (1999), pp. 225-230 | DOI

[7] Halmos, P. R. A Hilbert space problem book, Springer-Verlag, New York, 1982

[8] Halmos, P. R. Linear Algebra Problem Book, Mathematical Association of America, Washington, DC, 1995

[9] Hamilton, W. R. Lectures on Quaternions, Hodges & Smith, Dublin, 1853

[10] Kantor, I. L.; Solodnikov, A. S. Hypercomplex Numbers: an Elementary Introuction to Algebras, Springer-Verlag, New York, 1989

[11] Kravchenko, V. V. Applied Quaternionic Analysis, Heldermann Verlag, Lemgo, 2003

[12] Leo, S. D.; Scolarici, G.; Solombrino, L. Quaternionic Eigenvalue Problem, J. Math. Phys., Volume 43 (2002), pp. 5815-5829 | DOI

[13] Li, T. Eigenvalues and eigenvectors of quaternion matrices, J. Central China Normal Univ. Natur. Sci., Volume 29 (1995), pp. 407-411

[14] Mackey, N. Hamilton and Jacobi meet again: quaternions and the eigenvalue problem, SIAM J. Matrix Anal. Appl.,, Volume 16 (1995), pp. 421-435 | DOI

[15] Qaisar, S.; Zou, L. Distribution for the Standard Eigenvalues of Quaternion Matrices, Int. Math. Forum, Volume 7 (2012), pp. 831-838

[16] Rodman, L. Topics in Quaternion Linear Algebra, Princeton University Press, Princeton, 2014 | DOI

[17] Rosenfeld, B. A. A history of non-Euclidean geometry: evolution of the concept of a geometric space, Springer-Verlag, New York, 1988

[18] Sudbery, A. Quaternionic Analysis, Math. Proc. Cambridge Philos. Soc., Volume 85 (1979), pp. 199-225

[19] Vince, J. Geometric algebra for computer graphics, Springer-Verlag, London, 2008 | DOI

[20] Voight, J. Quaternion Algebras, online version, , 2019

Cité par Sources :